

SECRETARIA DE ESTADO DE INFRAESTRUTURA E LOGÍSTICA DEPARTAMENTO DE ESTRADAS DE RODAGEM DO PARANÁ DIRETORIA TÉCNICA

Rodovia: PR-170/PRC-466

Trecho: km 220,00 (Perímetro Urbano de Turvo) - km 258,30

(Guarapuava)

Lote: 02

Extensão: 38,30 km

Subtrecho 01: km 220 (Perímetro Urbano de Turvo) a Entroncamento da

Rodovia Municipal (Palmeirinha) **Extensão do subtrecho:** 25,50 km

PROJETO EXECUTIVO DE ENGENHARIA PARA DUPLICAÇÃO E RESTAURAÇÃO

Volume 3D - Memória de Cálculo de Estruturas

Dezembro de 2023

CONSÓRCIO IGUATEMI-ÚNICA

SUMÁRIO

Α	Apresentação	4
В	Mapa de Localização	7
С	Memória de Cálculo de Estruturas da Ponte Sobre o Rio Turvo	9
1	SUPERESTRUTURA	10
1.1	Longarinas	10
1.2	Longarinas in loco	25
1.3	Lajes	27
1.4	Transversinas de vão	29
1.5	Transversinas de apoio	30
1.6	Cortinas	31
1.7	Viga da cortina	32
1.8	Alas	33
2	MESOESTRUTURA	34
2.1	Cargas Verticais da Superestrutura	34
2.2	Cargas Verticais da Mesoestrutura	34
2.3	Aparelho de Apoio	34
2.4	Rigidez Longitudinal	34
2.5	Rigidez Transversal	35
2.6	Forças Horizontais Longitudinais	35
2.7	Forças Horizontais Transversais	36
2.8	Esforços no Pórtico P1=P2	36
2.9	Dimensionamento Travessa Topo dos Pilares	40
2.10	Dimensionamento Pilares	41
3	INFRAESTRUTURA	44
3.1	Blocos P1=P2	44
3.2	Dimensionamento Geotécnico das Estacas	48
3.3	Dimensionamento Estrutural das Estacas	52
D	Memória de Cálculo de Estruturas do Viaduto de Turvo	63
1	SUPERESTRUTURA	64
1.1	Longarinas	64
1.2	Longarinas in loco	79
1.3	Lajes	81
1.4	Transversinas de apoio	83
1.5	Cortinas	84
1.6	Viga da cortina	85
1.7	Alas	86

2	INFRA E MESOESTRUTURA	87
2.1	Cargas Verticais da Superestrutura	87
2.2	Cargas Verticais da Mesoestrutura	87
2.3	Aparelho de Apoio	87
2.4	Rigidez Longitudinal e Transversal	87
2.5	Forças Horizontais Longitudinais	88
2.6	Forças Horizontais Transversais	88
2.7	Cálculo da Fretagem	88
2.8	Dimensionamento da Sapata Corrida	89
E	Memória de Cálculo de Estruturas do Viaduto de Palmeirinha	91
1	SUPERESTRUTURA	92
1.1	Longarinas	92
1.2	Lajes	108
1.3	Transversinas de apoio	111
2	MESOESTRUTURA	112
2.1	Alas	112
2.2	Cortinas	113
2.3	Cargas Verticais da Superestrutura	114
2.4	Cargas Verticais da Mesoestrutura	114
2.5	Aparelho de Apoio	114
2.6	Rigidez Longitudinal	114
2.7	Rigidez Transversal	115
2.8	Forças Horizontais Longitudinais	115
2.9	Forças Horizontais Transversais	116
2.10	Esforços nos Pórticos	116
2.11	Dimensionamento Travessa P2	122
2.12	Dimensionamento Pilar P2	123
3	INFRAESTRUTURA	125
3.1	Blocos P1=P3	125
3.2	Blocos P2	127
3.3	Dimensionamento Geotécnico das Estacas	132
3.4	Dimensionamento Estrutural das Estacas	135
F	Termo de Encerramento	144

A) APRESENTAÇÃO

1.1 Apresentação

O presente volume, denominado **Volume 3D – Memória de Cálculo de Estruturas**, é parte integrante do *Projeto Executivo de engenharia para duplicação e restauração da Rodovia PR-170/PRC-466, com início do perímetro urbano de Turvo, e finalizando no início da pista dupla em Guarapuava, no Estado do Paraná - Lote 02 – Subtrecho 01: km 220 (Perímetro Urbano de Turvo) a Entroncamento da Rodovia Municipal (Palmeirinha), com extensão, aproximada, de 25,50 km.*

A apresentação do Projeto Executivo foi organizada conforme indicado pelo **Anexo A1 – Especificações para apresentação dos projetos viários** do DER-PR, mais especificamente em seu item "6. Formas e Apresentação", constando, portanto, dos seguintes volumes:

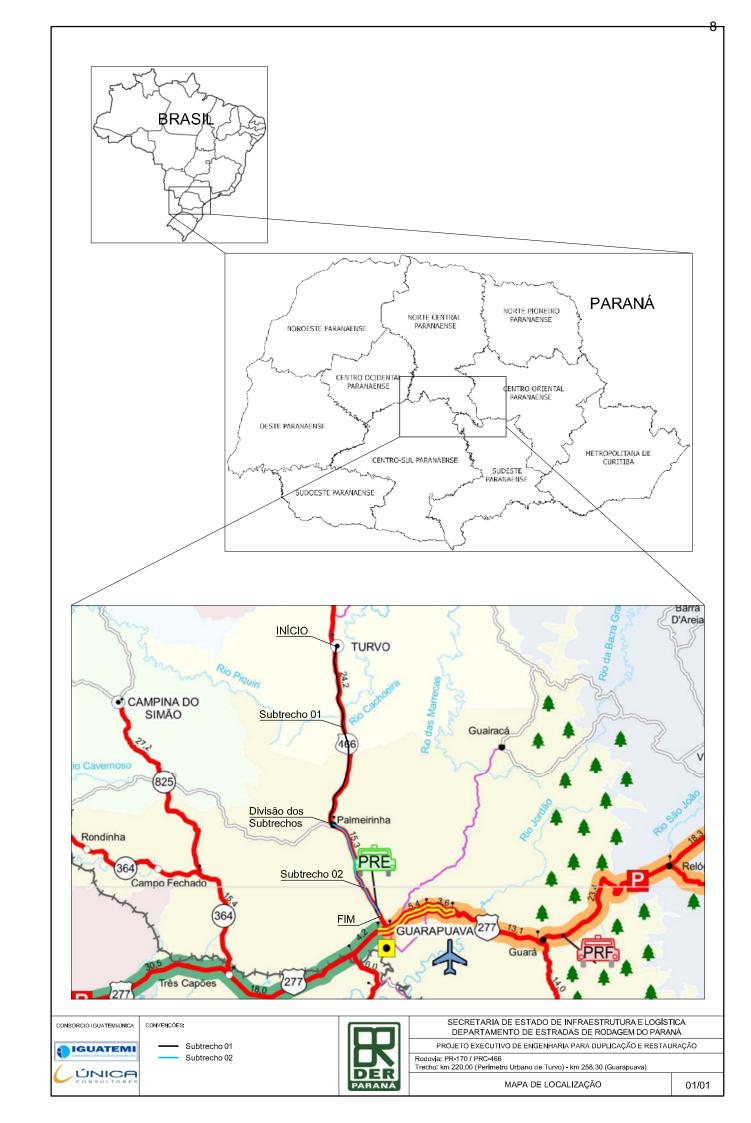
- Volume 1 Relatório do Projeto e Documentos para Concorrência, contendo o resumo objetivo dos estudos e projetos desenvolvidos, suas conclusões e recomendações, além de fornecer os elementos necessários para a licitação das obras;
- Volume 2 Projeto de Execução, contendo os desenhos relativos ao projeto, detalhes e informações necessárias à execução da obra;
- Volume 3 Memória Justificativa, contendo a memória descritiva dos estudos e projetos elaborados, incluindo os critérios adotados, os procedimentos metodológicos empregados, os cálculos efetuados e as soluções propostas para as obras;
- Volume 3A Estudos Geotécnicos, contendo os resultados das sondagens e ensaios geotécnicos realizados;
- Volume 3B Projeto de Desapropriação, contendo a caracterização das áreas e benfeitorias a serem desapropriadas, bem como o cadastro individual dos proprietários;
- Volume 3C Notas de Serviço e Memória de Cálculo de Volumes Terraplenagem, contendo as notas de serviço, os cálculos de volumes e os elementos de locação da obra;
- Volume 3D Memória de Cálculo de Estruturas, contendo a memória de cálculo do dimensionamento da OAE do segmento;
- Volume 3E Memória de Cálculo do Projeto Geotécnico, contendo a memória de cálculo dos muros de contenção e do aterro sobre solo mole;
- Volume 4 Orçamento da Obra, contendo o custo dos serviços e obras necessárias à execução do projeto rodoviário;
- Volume 5A Componente Ambiental Plano de Controle Ambiental, constando do Plano de Controle Ambiental para a execução da obra;
- Volume 5B Componente Ambiental Inventário Florestal, contendo o inventário da vegetação a ser suprimida para a execução da obra.

IDENTIFICAÇÃO DO PROJETO:

- Projetista: Consórcio Iguatemi-Única, composto pelas empresas Iguatemi Consultoria e Serviços de Engenharia Limitada (C.N.P.J.: 83.256.172/0001-58) e Única Consultores de Engenharia Limitada (C.N.P.J.: 02.001.296/0001-90)
- Superintendência DER-PR: Regional Campos Gerais

- Identificação do Projeto: Projeto Executivo de engenharia para duplicação e restauração
- Rodovia: PR-170 / PRC-466
- Trecho: 220,00 (Perímetro Urbano de Turvo) ao km 258,30 (Guarapuava)
- Início do Trecho: km 220,00 (coordenadas 25°1'21.57"S; 51°32'45.73"O), encaixe com o final do projeto do Lote 01 (objeto de outra licitação) que delimitará o final da pista simples.
- Fim do Trecho: km 258,30 (coordenadas 25°20'21.76"S; 51°29'36.18"O), no início da pista dupla em obras em Guarapuava;
- Extensão Total do Trecho: 38,30 km.
- Lote: 02
- Subtrecho:
 - Subtrecho 01: km 220 (Perímetro Urbano de Turvo) a Entroncamento da Rodovia Municipal (Palmeirinha): aproximadamente 25,50 km;
 - Subtrecho 02: Entroncamento da Rodovia Municipal (Palmeirinha) a Início da pista dupla (Guarapuava): aproximadamente 12,80 km.

DADOS CONTRATUAIS:


- Nº do Contrato: CT Nº 003/2021 DER/DT (assinado em 22/01/2021);
- Edital nº: SDP 015/2019 DER/DT;
- Data da Ordem de Serviço: 09/02/2021;
- Início do Prazo Contratual: 15/02/2021;
- Prazo de Execução: 810 (oitocentos e dez) dias corridos.

Eng.º Prudêncio Valentim Wust Coordenador Geral – Consórcio Iguatemi-Única CREA/SC 005.818-1

B) MAPA DE LOCALIZAÇÃO

C – MEMÓRIA DE CÁLCULO ESTRUTURAL DA PONTE SOBRE O RIO TURVO

1 SUPERESTRUTURA

1.1 Longarinas

Para o dimensionamento, as longarinas foram consideradas isostáticas. Serão moldadas no local, em concreto protendido, com protensão executada *in loco*. Posteriormente serão unificadas às lajes, de modo a criar uma seção composta em concreto armado e protendido, com o intuito de resistir aos esforços solicitantes.

As características das seções, verificações de tensões e dimensionamentos apresentados ao longo da memória foram obtidos através de planilhas em Excel, programadas pelo autor desta memória.

Serão apresentados todos os procedimentos necessários para o dimensionamento das longarinas protendidas, incluindo o levantamento de ações que solicitam a estrutura, as características da seção, verificações das tensões em serviço e estado limite último.

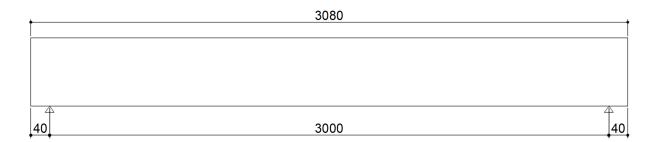


Figura 1 - Esquema estrutural

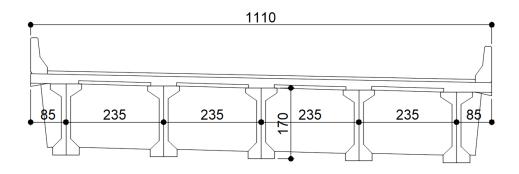
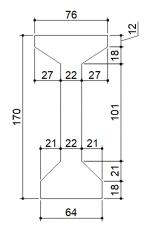



Figura 2 - Seção transversal da obra

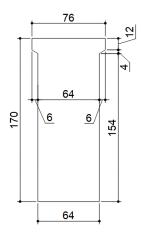


Figura 3 - Seção das longarinas nos vãos e apoios respectivamente

Posteriormente ela será unificada às lajes de modo a criar uma seção composta em concreto armado e protendido com o intuito de resistir os esforços solicitantes.

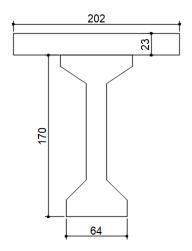


Figura 4 - Seção composta (Laje+longarina)

As características geométricas foram calculadas através de planilhas em Excel, diferenciando as seções isoladas e compostas.

Características	Viga isolada	Viga composta
Ac (m²)	0,607	1,009
I (m4)	0,212	0,440
ys (m)	0,850	0,466
yi (m)	0,850	1,234
ylaje (m)	-	0,696
Ws (m ³)	0,250	0,944
Wi (m³)	0,250	0,356
Wlaje (m³)	-	0,632

Figura 5 - Características geométricas

CONSÓRCIO:

As tensões nas seções foram calculadas considerando as perdas de protensão, imediatas e progressivas nas armaduras ativas, obedecendo as solicitações normativas exigidas pela NBR 6118/2014.

As perdas de protensão foram estimadas supondo os seguintes parâmetros:

- Idade mínima para protensão = 10 dias;
- Abatimento do concreto (Slump) = 0-4;
- Umidade do ambiente = 70%;
- Temperatura média de cura = 20°C;
- Tipo de cimento = CPV-ARI.

1.1.1 Cargas permanentes por longarina

- Fase 1:

Peso próprio da longarina: g1 = 0,607 x 25 = 15,18 kN/m

Carga concentrada nas extremidades: G₁ = 10,00 kN

- Fase 2:

Peso próprio da laje e transv. de vão: $g_2 = 2,02 \times 0,23 \times 25 + (1,52 \times 10,45 - 5 \times 0,49) \times 0.30 \times 25 / (5 \times 30.80) = 13.37 kN/m$

 $0.30 \times 25 / (5 \times 30.80) = 12.27 \text{ kN/m}$

Transversinas de apoio (extremidade): $G_2 = (1,52 \times 10,45 - 5 \times 0,49) \times 0,25 \times 25 / 5 = 16,79$ kN

- Fase 3:

Pavimentação pista de rolamento: 10,30 x 0,07 x 25 = 18,02 kN/m

Barreiras New-jersey: $0,23 \times 2 \times 25 = 11,50 \text{ kN/m}$

Total: $g_3 = 18,02 + 11,50 = 29,52 / 5 = 5,90 \text{ kN/m}$

1.1.2 Cargas móveis por longarina segundo NBR 7188/2013

Para a obtenção das cargas móveis foi utilizado o trem-tipo 45 da referida norma, considerando este, homogeneizado. A repartição transversal das cargas móveis fica a cargo da transversina de vão. As rigidezes das longarinas no meio do vão equivalem a k =

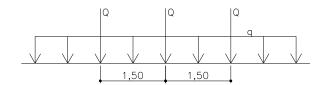

23549 kN/m Foram considerados coeficientes de repartição transversal com a utilização do programa computacional "Ftool". A partir desses, foram plotadas as linhas de influência e carregadas suas áreas positivas de modo a extrair o trem-tipo de cálculo para a longarina mais solicitada.

Figura 6 - Coeficientes de repartição transversal da longarina mais solicitada

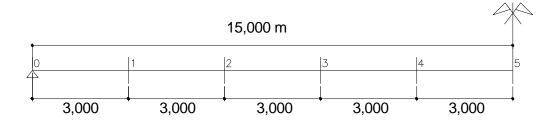
- Coeficiente de impacto adicional (φ)

$$\varphi = 1 + 1,06 \times \left(\frac{20}{L+50}\right) = 1 + 1,06 \times \left(\frac{20}{30+50}\right) = 1,265$$

- Trem-tipo de cálculo

No meio do vão: $Q = 60 \times 1,265 \times (0,614 + 0,419) = 78,40 \text{ kN}$

$$q = 5 \times 1,265 \times 2,36 = 14,93 \text{ kN/m}$$


Junto aos apoios: $Q = 60 \times 1,265 = 75,90 \text{ kN}$

$$q = 5 \times 1,265 \times 2,35 = 14,86 \text{ kN/m}$$

1.1.3 Cálculo dos esforços solicitantes

Esforços devido às cargas permanentes

Seções	M _{g1} (kN.m)	Mg2 (kN.m)	Mg3 (kN.m)	M∑g (kN.m)	Vg1 (kN)	Vg2 (kN)	Vg3 (kN)	VΣg (kN)
0	0,00	0,00	0,00	0,00	227,70	184,10	88,50	500,30
1	614,80	496,90	239,00	1350,70	182,20	147,20	70,80	400,20
2	1093,00	883,40	424,80	2401,20	136,60	110,40	53,10	300,10
3	1434,50	1159,50	557,60	3151,60	91,10	73,60	35,40	200,10
4	1639,40	1325,20	637,20	3601,80	45,50	36,80	17,70	100,00
5	1707,80	1380,40	663,80	3752,00	0,00	0,00	0,00	0,00

Esforços devido às móveis

Seções	Mq (kN.m)	Vq+ (kN)	V _q - (kN)
0	0,00	447,40	0,00
1	1204,40	381,30	-14,00
2	2133,30	319,70	-44,20
3	2786,70	262,60	-79,00
4	3188,20	210,00	-118,20
5	3325,90	161,80	-161,80

Esforços de cálculo

Seções	Mg	Mq	Md	Vg (kN)	/g (kN) Vq (kN)	
Seçues	(kN.m)	(kN.m)	(kN.m)	vg (KIN)	vq (KIN)	Vd (kN)
0	0,00	0,00	0	500,30	447,40	1346,51
1	1350,70	1204,40	3630,05	400,20	381,30	1112,22
2	2401,20	2133,30	6441,57	300,10	319,70	884,69
3	3151,60	2786,70	8434,71	200,10	262,60	664,04
4	3601,80	3188,20	9644,73	100,00	210,00	450,00
5	3752,00	3325,90	10054,05	0,00	161,80	242,70

 $S_d = 1,35 \times S_g + 1,50 \times S_q$

1.1.4 Traçado dos cabos

Foram adotados 3 cabos compostos de $10 \phi 12,7$ CP-190 RB, com ancoragens ativas em ambas as extremidades. As bainhas serão metálicas com diâmetro nominal de 65mm. A escolha da quantidade de cabos e cordoalhas foi feita a partir da análise dos esforços solicitantes e das tensões por eles geradas, de modo a não ultrapassar os limites estabelecidos pela NBR 6118/2014.

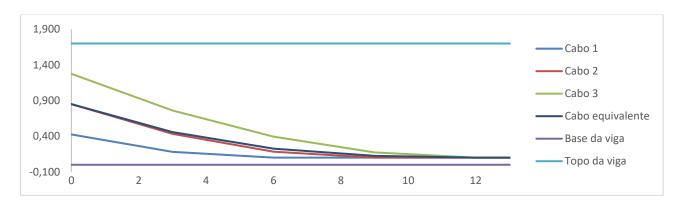


Figura 7 - Elevação dos cabos

\setminus \triangle	Posicionamento dos cabos (m)											
$\mid \times \mid$	S	0	S	1	S	2	S	3	S	4	S	5
	Х	у	Х	у	Х	у	Х	У	Х	У	Х	у
Cabo 1	0,000	0,425	3,000	0,181	6,000	0,100	9,000	0,100	12,000	0,100	15,000	0,100
Cabo 2	0,000	0,850	3,000	0,433	6,000	0,183	9,000	0,100	12,000	0,100	15,000	0,100
Cabo 3	0,000	1,275	3,000	0,761	6,000	0,394	9,000	0,173	12,000	0,100	15,000	0,100
Cabo eq.	0,000	0,850	3,000	0,459	6,000	0,226	9,000	0,124	12,000	0,100	15,000	0,100

1.1.5 Determinação da tensão inicial

Segundo a NBR 6118/2014, os limites de tensão para as cordoalhas são:

$$\sigma_{pi} \le \begin{cases} 0.74 \times f_{ptk} = 1406 \text{ MPa} \\ 0.82 \times f_{pyk} = 1402 \text{ MPa} \end{cases}$$

Adotando cabos com 10 cordoalhas de 12,7 CP-190RB, temos:

$$A_{\rm p} = 0.987 \times 10 = 9.87 \ cm^2 / m$$

$$P_i = 140,2 \times 9,87 = 1383,77 \text{ kN/cabo} \rightarrow \text{p/3 cabos} = 4151,9 \text{ kN}$$

1.1.6 Perdas imediatas

1.1.6.1 Perdas por atrito

$$P_0 = P_i \times (1 - (\mu \times \Sigma \alpha + \beta \times \mathbf{x}))$$

Pi = 4151,9 μ = 0,25 β = 0,0025

Comprimento parabólico do cabo a partir da seção 0: a = 12,0 m

Seção	Trecho x (m)	a-x (m)	α (rad)	Σα	Po (kN)
0	0	12,000	0,124	0,000	4151,9
1	3	9,000	0,080	0,045	4097,9
2	6,000	6,000	0,042	0,082	4052,0
3	9	3,000	0,005	0,119	4007,7
4	12,000	0,000	0,000	0,124	3994,7
5	15	0,000	0,000	0,124	3987,3

Alongamento previsto durante a protensão (ΔL) = 10,24cm para cada lado Alongamento total do cabo = 20,49cm

1.1.6.2 Perdas por acomodação da ancoragem

 $\delta = 6 \text{ mm}$ $A_p = 29,61 \text{ cm}^2$ $\sigma_{pi} = 1402 \text{ MPa}$

Trecho	Área (m²)
0-1	80,98
1-2	206,872
2-3	331,958
3-4	135,909
4-5	101,022
Σ	856,74

Seção	Po (kN)
0	3700,0
1	3754,0
2	3799,9
3	3844,2
4	3857,1
5	3864,6

 $A = 3553,2 \text{ m}^2$ $\Delta P_m = 122,65$

1.1.6.3 Perdas por encurtamento elástico

 $Ac = 0,607 \text{ m}^2$ I = 0,212 m4 Ep/Ec = 5,647 n = 3 cabos

Seção	e _p (m)	σ _{cp} (kN/m²)	σεg (kN/m²)	Δσ _p (kN/m²)	ΔP (kN)	Po (kN)
0	0,000	-6094,5	0,0	-11471,7	34,0	3666,0
1	0,391	-8889,2	1132,7	-14600,2	43,2	3710,7
2	0,624	-13227,8	3212,0	-18852,7	55,8	3744,1
3	0,725	-15854,2	4899,4	-20620,3	61,1	3783,1
4	0,750	-16563,4	5788,1	-20282,3	60,1	3797,1
5	0,750	-16595,5	6029,6	-19888,2	58,9	3805,7

1.1.6.4 Perdas imediatas por seção

Seção	Pi (kN)	Po (kN)	Perdas (%)
0	4151,9	3666,0	11,7
1	4151,9	3710,7	10,6
2	4151,9	3744,1	9,8
3	4151,9	3783,1	8,9
4	4151,9	3797,1	8,5
5	4151,9	3805,7	8,3

1.1.7 Parâmetros utilizados para a estimativa das perdas progressivas

Dados de entrada	Etap	oa 02	Etap	oa 03	Etap	oa 04	
Dados de entrada	$\Delta \mathbf{t}$ ef	T (°C)	Δt ef	T (°C)	Δt ef	T (°C)	
Temperatura média	10	20	30	20	45	20	
fck (Mpa)	4	.0	4	.0	4	0	
Idade inicial	1	10		30		45	
ldade final	100	10000		10000		10000	
Tipo de cimento (α)	Fluência	Retração	Fluência	Retração	Fluência	Retração	
προ de cimento (α)	3	1	3	1	3	1	
Umidade relativa Uar (%)	7	0	70		70		
Slump (cm)	5	,0	5,0		5,0		
Área seção transversal (cm²)	6071		6071		9636		
Perímetro contato ar (cm)	45	0,3	747,2		747,2		

1.1.7.1 Fluência

	Etapa 02	Etapa 03	Etapa 04
to - Idade fictícia, em dias	30,00	90,00	135,00
s	0,20	0,20	0,20
β1(t) - relação entre fckj/fck	0,874	1,007	1,043
β1(∞) - relação entre fckj/fck	1,007	1,043	1,221
φa - Coef. de fluência rápida	0,106	0,028	0,117
γ - Coef. Espessura fictícia	1,449	1,449	1,449
hfic (cm)	39,080	23,552	37,382
φ1c	2,000	2,000	2,000
φ2c	1,372	1,505	1,383
φf ₀₀	2,745	3,010	2,767
Α	291,84	232,62	286,09
В	819,35	578,96	798,44
С	599,02	437,82	581,83
D	11321,04	8583,54	11078,78
βd(t)	0,615	0,565	0,995
$\beta f(t_0)$	0,347	0,528	0,534
βf(t)	0,480	0,584	0,972
φd∞ - valor = 0,4	0,4	0,4	0,4
φ(t,t0)	0,716	0,424	1,725

1.1.7.2 Retração

	Etapa 02	Etapa 03	Etapa 04
10 ⁴ .ε _{1s}	-6,160	-6,160	-6,160
10 ⁴ .ε _{2s}	0,805	0,876	0,811
10⁴4.εcs∞	-4,961	-5,396	-4,993
Α	40,000	40,000	40,000
В	45,031	32,887	44,093
С	37,410	38,660	37,541
D	271,905	141,485	256,441
E	76,061	24,638	69,125
β s (t_0)	0,047	0,191	0,146
βs(t)	0,106	0,239	1,000
10 ⁴ .εcs(t,t0)	-0,293	-0,258	-4,265

1.1.7.3 Relaxação da armadura

				Etapa 01	Etapa 02	Etapa 03
Seção	σрі	σpi/fptk	Ψ1000	Ψ(t,t0)	Ψ(t,t0)	Ψ(t,t0)
0	1238	0,652	1,924	1,72	1,65	4,81
1	1253	0,660	2,020	1,81	1,73	5,05
2	1264	0,666	2,092	1,87	1,79	5,23
3	1278	0,672	2,164	1,94	1,86	5,41
4	1282	0,675	2,200	1,97	1,89	5,5
5	1285	0,676	2,212	1,98	1,90	5,53

1.1.8 Perdas progressivas

Tensão nos cabos

Seção	Np (kN)	Mp (kN.m)	Mg1 (kN.m)	Mg2 (kN.m)	Mg3 (kN.m)	0,4xMq (kN.m)	σc,p0g (kN/m²)	αр
0	-6039	0	0	0	0	0	-4326	5,65
1	-6112	-2675	1133	915	422	850	-2900	5,65
2	-6167	-6866	3212	2596	975	1958	-876	5,65
3	-6231	-9371	4899	3960	1408	2815	1295	5,65
4	-6254	-10051	5788	4679	1644	3291	2963	5,65
5	-6269	-10074	6030	4874	1713	3433	3555	5,65

Perdas progressivas

	Etapa 01	Etapa 02	Etapa 03	Etapa 01	Etapa 02	Etapa 03	Etapa 01	Etapa 02	Etapa 03
Seção	σc,p0g (kN/m²)	σc,p0g (kN/m²)	σc,p0g (kN/m²)	χ(t,to)	χ(t,to)	χ(t,to)	χр	χр	χр
0	-6039	0	0	0,0174	0,0166	0,0493	1,0174	1,0166	1,0493
1	-7654	915	1272	0,0183	0,0175	0,0518	1,0183	1,0175	1,0518
2	-9821	2596	2933	0,0189	0,0181	0,0537	1,0189	1,0181	1,0537
3	-10703	3960	4223	0,0196	0,0187	0,0556	1,0196	1,0187	1,0556
4	-10517	4679	4936	0,0199	0,0191	0,0566	1,0199	1,0191	1,0566
5	-10313	4874	5146	0,0200	0,0192	0,0569	1,0200	1,0192	1,0569

 Etapa 01 Etapa 02 Etapa 03

 Seção
 χc
 χc
 χc
 η
 η
 η
 ρ

 0
 1,3582
 1,2118
 1,8626
 1,00
 1,00
 1,34
 0,00

 4
 2,583
 4,2448
 4,8636
 4,44
 4,44
 2,38
 0,00

Ocçuo	ν.	λ°	λ°	'1	• (•1	PP
0	1,3582	1,2118	1,8626	1,00	1,00	1,34	0,00293
1	1,3582	1,2118	1,8626	1,44	1,44	2,38	0,00293
2	1,3582	1,2118	1,8626	2,11	2,11	3,34	0,00293
3	1,3582	1,2118	1,8626	2,50	2,50	3,83	0,00293
4	1,3582	1,2118	1,8626	2,61	2,61	3,96	0,00293
5	1,3582	1,2118	1,8626	2,61	2,61	3,96	0,00293

	Etapa 01	Etapa 02	Etapa 03	Final	
Seção	Δσ _P (kN/m²)	Δσ _P (kN/m²)	Δσ _P (kN/m²)	Δσ _p (kN/m²)	P∞ (kN)
0	-50988	-25032	-141266	-217286	3022,6
1	-58606	-23903	-130618	-213127	3079,7
2	-68021	-20537	-115456	-204014	3140,0
3	-72403	-18078	-104711	-195192	3205,2
4	-72072	-16768	-98774	-187613	3241,6
5	-71427	-16477	-97190	-185094	3257,7

1.1.8.1.1 Perdas por seção

Sooão	Pi (kN)	Po (kN)	Perdas	Perdas totais
Seção	FI(KIN)	PO (KIN)	progressivas (%)	(%)
0	3666,0	3022,6	17,5	29,3
1	3710,7	3079,7	17,0	27,6
2	3744,1	3140,0	16,1	26,0
3	3783,1	3205,2	15,3	24,2
4	3797,1	3241,6	14,6	23,2
5	3805,7	3257,7	14,4	22,7

1.1.9 Verificação do estado limite último de flexão (ELU)

$$M_{sdm\acute{a}x} = 10054,05 \text{ kN.m}$$
 $d = 1,83 \text{ m}$ $0,8x = 0,12 \text{ m}$ < $0,23 \text{ m}$ LN na laje $\epsilon_{sp} = 10$ %

- Determinação do pré-alongamento

$$\epsilon_{p0} = 4,95 \% o$$
 $\sigma_{cpn} = 4149 \text{ kN/m}^2$
 $\epsilon_{cpn} = -\epsilon_{pn} = 0,12 \% o$
 $\epsilon_{pi} = \epsilon_{p0} + \epsilon_{pn} = 5,07 \% o$
 $\epsilon_{p} = 15,07 \% o$
 $\sigma_{p} = 1507 \text{ MPa}$

- Momento resistente de cálculo

Número de cordoalhas n = 30Área de cada cordoalha = 0,987 cm²

$$MRd1 = n * Ap * \sigma_p * (d - 0.5 * 0.8x) = 7893.97 kN.m$$

- Armadura passiva

Adicionando: 10 barras de 20,0 $A_s = 31 \text{ cm}^2$ $d_1 = 1,83 \text{ m}$ $d_2 = 1,88 \text{ m}$ 0,8x = 0,16 m $\epsilon_{sp} = 10 \%$ $\epsilon_{pi} = \epsilon_{p0} + \epsilon_{pn} = 5,07 \%$ $\epsilon_{p} = 15,07 \text{ MPa}$ $\epsilon_{yd} = 435 \text{ MPa}$

Momento resistente de cálculo

$$MRd1 = As * fyd * (d2 - 0.5 * 0.8x) = 2460,89 kN.m$$

MRd = MRd1 + MRd2

$$MRd = 10272,00 \text{ kN.m} > Msdmáx = 10054,05 \text{ kN.m} \longrightarrow OKS$$

- Armadura longitudinal na mesa superior

Considerando o maior esforço de tração na seção 3, com linha neutra a 0,005 m do topo da seção, temos:

$$A_s = 0.3 \text{ cm}^2$$
 2 barras de 12,5mm

1.1.10 Dimensionamento dos esforços cortantes

fck = 40 MPa fcd = 29 MPa fctm = 3,51 MPa fctd = 1,75 MPa

bw = 0,18 m ← Demais seções d = 1,83 m

bw = 0,30 m ← Seção 0

Verificação do concreto: Vsd < VRd2

Vsd = 1346,51 kN

VRd2 = 1848,54 kN > Vsd OK!

Parcela resistida pelo concreto (Modelo I) → Vc = 346,74 kN ← Demais seções Vc = 577,90 kN ← Seção 0

Seção	Psenα (kN)	Vsd (kN)	Mo (kN.m)	β	β x Vc (kN)	Vsw (kN)	Asw (cm²/m)	Δσs (MPa)	α
0	251,01	1120,59	1243,40	1,0	577,90	831,64	11,61	72,27	1,00
1	255,75	882,04	2472,53	1,7	582,92	590,58	8,25	77,30	1,00
2	260,76	650,00	3252,03	1,5	521,79	389,10	5,43	89,46	1,05
3	266,18	424,48	3643,91	1,4	496,54	176,21	2,46	111,89	1,32
4	269,20	207,72	3764,63	1,4	482,09	0,00	0,00	158,63	1,87
5	270,53	-0,78	3783,34	1,4	477,22	0,00	0,00	145,00	1,71

$$\beta = 1 + \frac{M_0}{M_{\text{sdm\'ax}}} \le 2$$

Fator de fadiga: $\alpha = \frac{\Delta \sigma_s}{\Delta f_{sd}}$ sendo, $\Delta f_{sd} = 85$ MPa

Sooso	Asw $x \alpha$	Estribo	os
Seção	(cm²/m)	bitolas	ramos
0	11,61	8,0 c. 9	2
1	8,25	8,0 c. 12	2
2	5,72	8,0 c. 17	2
3	3,24	8,0 c. 20	2
4	2,90	8,0 c. 20	2
5	2,90	8,0 c. 20	2

$$A_{\text{swmin}} = \frac{0.2 \times b_{w} \times f_{\text{ctm}}}{f_{\text{ywk}}}$$

1.1.11 Dimensionamento da fretagem dos cabos na cabeça das longarinas

Fretagem segundo a NCHRP (National Cooperative Highway Research Program)

 $A = 64 \times 43 = 2752 \text{ cm}^2$

 $Ab = 30 \text{ x} \quad 35 = 1050 \text{ cm}^2$

fck = 40 MPa

A bainha = $38,5 \text{ cm}^2$

Ab útil = $1011,5 \text{ cm}^2$

Força de protensão = 1384 kN

 $\sigma c = 13.7 \text{ MPa}$

Parcela 01, espraiamento da carga:

Fult = 5240 kN

Desconsiderando a parcela 02 (efeito da fretagem), temos:

F.S = 3,44

- Armaduras de fretagem na direção vertical:

$$Asv = 3,17 \text{ cm}^2 \rightarrow 7,38 \text{ cm}^2/\text{m}$$

- Armaduras de fretagem na direção horizontal:

$$A_{sv} = 5,58 \text{ cm}^2 \rightarrow 8,72 \text{ cm}^2/\text{m}$$

1.1.12 Dimensionamento para içamento das longarinas

Peso próprio da longarina = 15,18 x 19,20 + 1,10 x 0,80 x 2 x 25 = 335,5 kN

Peso suportado por um cabo = 168 kN

$$A_s = \frac{1.4 \times 168}{43.5} = 5,40 cm^2 \rightarrow Adotado: 10 \phi 16,0$$

1.1.13 Verificações das tensões em serviço (ELS)

	Esforços solicitantes									
Sooão	Mg1	Mg2	Mg3	Mq	P ₀ cosα	P∞	Simples	Comp.		
Seção	(kN.m)	(kN.m)	(kN.m)	(kN.m)	(kN)	cosα(kN	e _p (m)	e _p (m)		
0	0,00	0,00	0,00	0,00	3653,34	3012,18	0,000	0,384		
1	614,80	496,90	239,00	1204,40	3697,91	3069,02	0,391	0,776		
2	1093,00	883,40	424,80	2133,30	3731,17	3129,17	0,624	1,009		
3	1434,50	1159,50	557,60	2786,70	3770,07	3194,10	0,725	1,110		
4	1639,40	1325,20	637,20	3188,20	3783,96	3230,36	0,750	1,134		
5	1707,80	1380,40	663,80	3325,90	3792,58	3246,41	0,750	1,134		

Tensões (kN/m²)									
Seção	Prot. Inicial (Pi)		σMg1		♂Mg2		σMg3		
	σi	σs	δi	σs	δi	σs	δi	σs	
0	-6014	-6022	0	0	0	0	0	0	
1	-11880	-298	2460	-2462	1988	-1990	671	-253	
2	-15463	3177	4374	-4376	3535	-3537	1193	-450	
3	-17151	4738	5740	-5744	4640	-4643	1566	-590	
4	-17585	5127	6560	-6564	5303	-5306	1789	-675	
5	-17625	5138	6834	-6838	5524	-5527	1864	-703	

Tensões (kN/m²)						
Seção	σΙ	Mq	σperdas			
	σi	σs	σi	σs		
0	0	0	-1327	-374		
1	3382	-1275	-1993	-106		
2	5991	-2259	-2302	47		
3	7826	-2951	-2366	106		
4	8953	-3376	-2312	117		
5	9340	-3522	-2281	115		

- Combinações (Protensão limitada)

Ato da protensão: 1,1 x Pi + 0,9 x Mg1

Fim da construção: Pi + Mg1 + Mg2 + Mg3 + Perdas/2

Comb. Frequente: Pi + Mg1 + Mg2 + Mg3 + Perdas + ψ 1 x Mq Comb. Quase-perm.: Pi + Mg1 + Mg2 + Mg3 + Perdas + ψ 2 x Mq

Verificações (kN/m²)									
Seção	Ato da protensão		Fim da construção		Comb. Frequente $(\psi_1 = 0.5)$		Comb. Quase- perm. (ψ 2 = 0,3)		
	σi	σs	σi	Ωs	σi	Ωs	σi	σs	
0	-6615	-5419	-6677	-6209	-7341	-6396	-7341	-6396	
1	-10854	-2730	-7757	-5056	-7063	-5747	-7739	-5492	
2	-13073	-444	-7512	-5163	-5668	-6269	-6866	-5817	
3	-13700	43	-6388	-6186	-3658	-7608	-5224	-7018	
4	-13440	-269	-5089	-7360	-1768	-8990	-3559	-8315	
5	-13237	-502	-4544	-7873	-1015	-9576	-2883	-8872	

Limitações das tensões de acordo com NBR 6118/2014

	Compre	essão		Traça	ão	
σ c <u><</u>	$0.7 \times f_{ckj} =$	-24,5 MPa	σ t <u><</u>	$1,2 \times f_{ctkj} =$	2,7 MPa	(Ato protensão)
σc <u><</u>	0.7 x fck =	-28,0 MPa	σ t <u><</u>	$1,2 \times f_{ctk} =$	2,9 MPa	(Em serviço)

1.1.14 Armaduras complementares

Pele: $\begin{cases} \text{Alma de 22cm: } \phi 8,0c.20 \\ \text{Alma de 64cm: } \phi 10,0c.16 \end{cases}$

1.2 Longarinas in loco

Cargas permanentes distribuídas

 $g_1 = 0.61 \times 25 = 15.25 \, kN / m$

 $g_2 = 12,27kN/m$

 $g_3 = 5,90 kN / m$

 $g_{total} = 33,42kN/m$

Cargas permanentes concentradas

 $G_1 = 71,68kN$ (Cortinas + alas)

 $G_2 = 66,60 kN$ (Placa de transição)

 $G_3 = 17,88kN$ (Cabeça da longarina)

Cargas móveis

Q = 78,40 kN

$$q = 14,93kN/m$$

1.2.1 Dimensionamento à flexão

$$M_g = 138,28 \times 4,00 + 17,88 \times 0,725 + \frac{33,42 \times 4,00^2}{2} = 833,44 \text{ kN.m}$$

$$M_q = 78,40 \times (4,00 + 2,50 + 1,00) + \frac{14,93 \times 4,00^2}{2} = 707,44 \text{kN.m}$$

$$M_d = 1,35 \times 833,44 + 1,50 \times 707,44 = 2186,30 \, kN.m$$

$$k_c = \frac{64 \times 188^2}{218630} = 10{,}35$$
 $k_s = 0{,}0237$

$$A_{\rm s} = \frac{0.0237 \times 218630}{188} = 27.56cm^2 \rightarrow 6\phi25.0$$

1.2.2 Dimensionamento ao cortante

$$V_g = 138,28 + 17,88 + 33,42 \times 4,00 = 290 \, kN$$

$$V_a = 3 \times 78,40 + 14,93 \times 4,00 = 295 kN$$

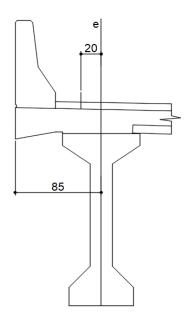
$$V_d = 1,35 \times 290 + 1,50 \times 295 = 834 \text{kN}$$

$$V_{Rd2} = 0.27 \times 0.88 \times 21429 \times 0.64 \times 1.88 = 6126 \text{ kN} > V_d \rightarrow OK$$

$$V_c = 0.6 \times 1448 \times 0.64 \times 1.88 = 1045 \ kN$$

$$V_{\text{out}} = 834 - 1045 = -211 \, kN$$

$$A_{\rm sw} = A_{\rm swmin} = 7,42 \ cm^2 / m \rightarrow \phi \ 8,0c.13 \ (2 \ ramos)$$


$$A_{\text{spele}} = 0.10 \times 64 = 6.40 \text{ cm}^2 / \text{ m} > 5.00 \text{ cm}^2 / \text{ m} \rightarrow \phi 10.0c.16$$

1.3 Lajes

1.3.1 Lajes em balanço

Momentos para cargas permanentes

$$M_{xeq} = 6,98 \ kN.m/m$$

Momentos para impacto de 100 kN no topo da barreira

$$M_{xeq} = \frac{100 \times 0.87}{2 \times (0.87 + 0.45)} = 32,95 \text{ kN.m/m}$$

Momentos para cargas móveis

$$M_{xeq} = 1,35 \times 75 \times 0,10 = 10,13 \text{ kN.m/m}$$

Dimensionamento

$$f_{ck} = 30 MPa$$

$$M_{xed} = 1,35 \times 6,98 + 1,5 \times 32,95 = 57,93 \text{ kN.m/m} = 5793 \text{ kN.cm/m}$$

$$k_c = \frac{100 \times 20^2}{5793} = 6,90 \rightarrow A_s^- = 6,98 \text{ cm}^2 / \text{m} > A_{\text{smin}} = 3,45 \text{ cm}^2 / \text{m}$$

$$A_{\rm s}^- = 6{,}98 \; cm^2 \; / \; m \rightarrow \phi \; 10{,}0 \; c.11$$

Para as armaduras de distribuição, foram adotados: $A_{sdistr} = \phi$ 8,0 c.14

1.3.2 Laie central

Para o dimensionamento da laje central será utilizada a tabela de Rüsch nº 14 e 58, com placa engastada-apoiada.

$$I_{y} = 2,35 \text{ m}$$

$$I_{y}/a = 1,18$$

$$t/a = 0.343$$

$$\phi = 1,35$$

$$I_{y} = 2,35 \ m$$
 $I_{y} / a = 1,18$ $t / a = 0,343$ $\phi = 1,35$ $g = 7,50 \ kN / m^{2}$

Momentos para cargas permanentes

$$M_{xmg} = 0.0625 \times 7.50 \times 2.35^2 = 2.59 \text{ kN.m/m}$$

$$M_{vma} = 0.0104 \times 7.50 \times 2.35^2 = 0.43 \text{ kN.m/m}$$

$$-M_{xeq} = 0.125 \times 7.50 \times 2.35^2 = 5.18 \text{ kN.m/m}$$

$$-M_{yeq} = 0.125 \times 7.50 \times 2.35^2 = 5.18 \text{ kN.m/m}$$

Momentos para cargas móveis

$$M_{xma} = 1,35 \times (75 \times 0,214 + 5 \times 0,04) = 21,94 \text{ kN.m/m}$$

$$M_{ymq} = 1,35 \times (75 \times 0,110 + 5 \times 0,02) = 11,27 \text{ kN.m/m}$$

$$-M_{xeq} = 1,35 \times (75 \times 0,351 + 5 \times 0,29) = 37,50 \text{ kN.m/m}$$

$$-M_{veg} = 1,35 \times (75 \times 0,396 + 5 \times 0,16) \times 0,95 = 39,12 \text{ kN.m/m}$$

Momentos gerados pela distribuição transversal das cargas móveis

$$M_{xmq} = 1,35 \times 75 \times 0,396 / 1,5 = 26,73 \text{ kN.m/m} \rightarrow M_{xmq} = 26,73 \text{ kN.m/m}$$

$$-M_{\text{xeg}} = 1,35 \times 75 \times 0,225 / 1,5 = 15,19 \text{ kN.m/m} \rightarrow -M_{\text{xeg}} = 37,50 \text{ kN.m/m}$$

Dimensionamento

$$f_{ck} = 30 \, MPa$$

$$M_{xmd} = 1,35 \times 2,59 + 1,5 \times 26,73 = 43,59 \text{ kN.m/m} = 4359 \text{ kN.cm/m}$$

$$k_c = \frac{100 \times 20^2}{4359} = 9.18 \rightarrow A_s = 5.17 \text{ cm}^2 / m > A_{smin} = 3.45 \text{ cm}^2 / m$$

Fadiga:
$$A_s = 6.05 \text{ cm}^2 / \text{m} \rightarrow \Delta \sigma_s = 189,20 \text{ MPa} \rightarrow \phi 10.0 \text{ c.}13$$

$$M_{ymd} = 1,35 \times 0,43 + 1,5 \times 11,27 = 17,49 \text{ kN.m/m} = 1749 \text{ kN.cm/m}$$

$$k_c = \frac{100 \times 15^2}{1749} = 12,87 \rightarrow A_s = 2,75 \text{ cm}^2 / m < A_{smin} = 3,45 \text{ cm}^2 / m$$

Fadiga:
$$A_s = 3,45 \text{ cm}^2 / m \rightarrow \Delta \sigma_s = 185,01 \text{ MPa} \rightarrow \phi 8,0 \text{ c.}14$$

$$-M_{xed} = 1,35 \times 5,18 + 1,5 \times 37,20 = 63,24 \text{ kN.m/m} = 6324 \text{ kN.cm/m}$$

$$k_c = \frac{100 \times 20^2}{6324} = 6,32 \rightarrow A_s = 7,62 \text{ cm}^2 / m > A_{smin} = 3,45 \text{ cm}^2 / m$$
Fadiga: $A_s = 8,60 \text{ cm}^2 / m \rightarrow \Delta \sigma_s = 188,96 \text{ MPa} \rightarrow \phi 12,5c.14$

$$-M_{yed} = 1,35 \times 5,18 + 1,5 \times 39,12 = 65,67 \text{ kN.m/m} = 6567 \text{ kN.cm/m}$$

$$k_c = \frac{100 \times 19^2}{6324} = 650 \times 460 \text{ kn.m/m} = 6567 \text{ kN.cm/m}$$

$$k_c = \frac{100 \times 19^2}{6567} = 5,50 \rightarrow A_s = 8,43 \text{ cm}^2 / m > A_{smin} = 3,45 \text{ cm}^2 / m$$

Fadiga: $A_s = 9,45 \text{ cm}^2 / \text{m} \rightarrow \Delta \sigma_s = 189,86 \text{ MPa} \rightarrow \phi 12,5 \text{ c.}13$

Para as armaduras de distribuição, foram adotados: $A_{sdistr} = \phi$ 8,0 c.14

1.4 Transversinas de vão

• Cargas permanentes

$$g_1 = 0.95 \times 25 = 23.75 \, kN / m$$
 (Peso próprio)

$$M_{g_{+}} = 36,20 kN.m$$
 $M_{g_{-}} = 3,30 kN.m$ $V_{g} = 36,40 kN$

Cargas móveis

$$Q = \frac{1,35 \times 450}{2} = 303,75 \text{kN (Por roda)}$$

$$M_{q_{+}} = 582,20 \, kN.m$$
 $M_{g_{-}} = 272,30 \, kN.m$ $V_{g} = 343,90 \, kN$

1.4.1 Dimensionamento à flexão

$$M_d^- = 1,35 \times 3,30 + 1,5 \times 272,30 = 412,91 \text{ kN.m} = 41291 \text{ kN.cm}$$

$$k_c = \frac{30 \times 170^2}{41291} = 20,99 \rightarrow A_s^- = 5,68 \text{ cm}^2 < A_{smin} = 7,88 \text{ cm}^2 \rightarrow 2\phi 25,0$$

$$M_d^+ = 1,35 \times 36,20 + 1,5 \times 582,20 = 922,17 \text{ kN.m} = 92217 \text{ kN.cm}$$

$$k_c = \frac{80 \times 170^2}{92217} = 25,07 \rightarrow A_s^+ = 12,64 \text{ cm}^2 > A_{smin} = 7,88 \text{ cm}^2 \rightarrow 3\phi 25,0$$

1.4.2 Dimensionamento ao cortante

$$V_d = 1,35 \times 36,40 + 1,5 \times 343,90 = 565 \text{ kN}$$

$$V_{Rd2} = 0.27 \times 0.88 \times 21429 \times 0.30 \times 1.70 = 2597 \text{ kN} > V_d \rightarrow OK$$

$$V_c = 0.6 \times 1448 \times 0.30 \times 1.70 = 443 \text{ kN}$$

$$V_{sw} = 565 - 443 = 122 \, kN$$

$$A_{\text{sw}} = \frac{0.122}{0.9 \times 435 \times 1.70} = 0.000183 \ m^2 / m = 1.83 \ cm^2 / m < A_{\text{swmin}} = 3.48 \ cm^2 / m \rightarrow \phi \ 6.3c.18 \ (2 \ ramos)$$

$$A_{\text{spele}} = 0.10 \times 30 = 3.00 \text{ cm}^2 / \text{ m} \rightarrow \phi 8.0 \text{ c.} 16$$

1.5 Transversinas de apoio

Cargas permanentes

$$g_1 = 0.79 \times 25 = 19.74 \, kN \, / \, m$$
 (Peso próprio)

 $g_2 = 7,69kN/m$ (Reação laje do tabuleiro)

$$M_{q+} = 3,50 \text{ kN.m}$$
 $M_{q-} = 7,10 \text{ kN.m}$ $V_q = 20,40 \text{ kN}$

Cargas móveis

$$Q = \frac{1,35 \times 450}{2} = 303,75 kN \text{ (Por roda)}$$

$$M_{a+} = 127,50 kN.m$$
 $M_{a-} = 258,20 kN.m$ $V_a = 313,20 kN$

1.5.1 Dimensionamento à flexão

$$M_d^- = 1,35 \times 7,10 + 1,5 \times 258,20 = 396,89 \text{ kN.m} = 39689 \text{ kN.cm}$$

$$k_c = \frac{25 \times 170^2}{39689} = 18,21 \rightarrow A_s^- = 5,46 \text{ cm}^2 < A_{smin} = 7,23 \text{ cm}^2 \rightarrow 2\phi 25,0$$

$$M_d^+ = 1,35 \times 3,50 + 1,5 \times 127,50 = 195,98 \text{ kN.m} = 19598 \text{ kN.cm}$$

$$k_c = \frac{80 \times 170^2}{19598} = 117,97 \rightarrow A_s^+ = 2,67 \text{ cm}^2 < A_{smin} = 7,23 \text{ cm}^2 \rightarrow 2\phi 25,0$$

1.5.2 Dimensionamento ao cortante

$$V_d = 1,35 \times 22,4 + 1,5 \times 313,2 = 500 \text{ kN}$$

$$V_{Rd2} = 0,27 \times 0,88 \times 21429 \times 0,25 \times 1,70 = 2164 \text{ kN} > V_d \rightarrow OK$$

$$V_c = 0.6 \times 1448 \times 0.25 \times 1.70 = 369 \text{ kN}$$

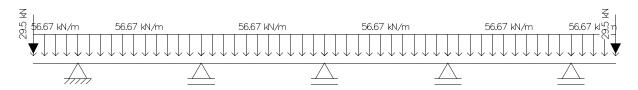
$$V_{sw} = 500 - 369 = 131 \, kN$$

$$A_{sw} = \frac{0.131}{0.9 \times 435 \times 1.70} = 0.000197 \ m^2 / m = 1.97 \ cm^2 / m < A_{swmin} = 2.90 \ cm^2 / m \rightarrow \phi \ 6.3c.20 \ (2 \ ramos)$$

$$A_{\text{spele}} = 0.10 \times 25 = 2.50 \text{ cm}^2 / \text{ m} \rightarrow \phi 8.0 \text{c.} 20$$

1.6 Cortinas

Cargas permanentes


 $g_1 = 18,98 kN / m$ (Peso próprio)

 $g_2 = 7,69kN/m$ (Reação das lajes)

 $g_3 = 30,00 kN/m$ (Placa de transição)

 $g_{total} = 56,67 kN / m$

 $G_1 = 29,50kN \text{ (Alas)}$

$$M_{a+} = 14,50 kN.m$$

$$M_{a-} = 28,90 kN.m$$
 $V_a = 77,20 kN$

$$V_{\alpha} = 77,20 kN$$

Cargas móveis

$$Q = \frac{1,35 \times 450}{2} = 303,75 kN \text{ (Por roda)}$$

$$M_{a+} = 146,20 kN.m$$

$$M_{a-} = 129,60 kN.m$$

$$V_a = 360,10 kN$$

1.6.1 Dimensionamento à flexão

$$M_d^- = 1,35 \times 28,90 + 1,5 \times 129,60 = 233,42 \text{ kN.m} = 23342 \text{ kN.cm}$$

$$k_c = \frac{30 \times 188^2}{23342} = 45,43 \rightarrow A_s^- = 2,88 \text{ cm}^2 < A_{smin} = 8,69 \text{ cm}^2 \rightarrow 2\phi 25,0$$

$$M_d^+ = 1,35 \times 14,50 + 1,5 \times 146,20 = 238,88 \text{ kN.m} = 23888 \text{ kN.cm}$$

$$k_c = \frac{30 \times 188^2}{23888} = 44,39 \rightarrow A_s^+ = 2,95 \text{ cm}^2 < A_{smin} = 8,69 \text{ cm}^2 \rightarrow 2\phi \text{ 25,0}$$

1.6.2 Dimensionamento ao cortante

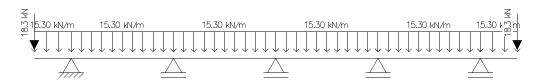
$$V_d = 1,35 \times 77,20 + 1,5 \times 360,10 = 644 \ kN$$

$$V_{Rd2} = 0,27 \times 0,88 \times 21429 \times 0,30 \times 1,88 = 2872 \text{ kN} > V_d \rightarrow OK$$

$$V_c = 0.6 \times 1448 \times 0.30 \times 1.88 = 490 \text{ kN}$$

$$V_{sw} = 644 - 490 = 154 \ kN$$

$$A_{\text{sw}} = \frac{0.154}{0.9 \times 435 \times 1.88} = 0.000209 \ m^2 / m = 2.09 \ cm^2 / m < A_{\text{sw min}} = 3.48 \ cm^2 / m \rightarrow \phi \ 6.3c.18 \ (2 \ ramos)$$


$$A_{spele} = 0.10 \times 30 = 3.00 \ cm^2 / m \rightarrow \phi \ 8.0c.16$$

1.7 Viga da cortina

Carregamentos e esforços

 $g_1 = 15,30 \, kN \, / \, m$ (Reação da cortina solicitada por cargas horizontais)

 $G_1 = 18,34kN$ (Reação da ala solicitada por cargas verticais)

$$M_{g+} = 4.7 kN.m$$
 $M_{g-} = 21.1 kN.m$ $V_g = 31.3 kN$

1.7.1 Dimensionamento à flexão

$$M_d^- = 1,35 \times 21,10 = 28,48 \text{ kN.m} = 2848 \text{ kN.cm}$$

$$k_c = \frac{30 \times 54^2}{2848} = 30,72 \rightarrow A_s^- = 1,22 \text{ cm}^2 < A_{smin} = 2,70 \text{ cm}^2 \rightarrow 2\phi 16,0$$

$$M_d^+ = 1,35 \times 4,70 = 6,35 \text{ kN.m} = 635 \text{ kN.cm}$$

$$k_c = \frac{30 \times 54^2}{635} = 137,76 \rightarrow A_s^+ = 0,27 \text{ cm}^2 < A_{smin} = 2,70 \text{ cm}^2 \rightarrow 2\phi 16,0$$

1.7.2 Dimensionamento ao cortante

$$V_d = 1,35 \times 31,30 = 42 \ kN$$

$$V_{Rd2} = 0.27 \times 0.88 \times 21429 \times 0.30 \times 0.54 = 825 \ kN > V_d \rightarrow OK$$

$$V_c = 0.6 \times 1448 \times 0.30 \times 0.54 = 141 \, kN$$

$$V_{sw} = 42 - 141 = -99 \ kN$$

$$A_{\text{sw}} = A_{\text{swmin}} = 3{,}48 \text{ cm}^2/\text{ m} \rightarrow \phi \text{ 6,3c.15 (2 ramos)}$$

1.8 Alas

Cargas verticais

 $G_1 = 43,30kN$ (Peso próprio + New-jersey)

Dimensionamento

$$M_d = 1,35 \times 43,30 \times 1,00 = 58,46 \text{ kN.m} = 5846 \text{ kN.cm}$$

$$k_c = \frac{40 \times 188^2}{5846} = 241,83 \rightarrow A_s = 0,72 \text{ cm}^2 < A_{smin} = 11,58 \text{ cm}^2 \rightarrow 4\phi 20,0$$

Cargas horizontais

Pressão do solo: 11,46 kN/m²

Pressão da sobrecarga: 8,25 kN/m²

Pressão média: 13,98 kN/m²

Dimensionamento

$$M_d = \frac{1,35 \times 13,98 \times 2,95 \times 1,00}{1,93} = 28,85 \text{ kN.m} = 2885 \text{ kN.cm}$$

$$k_c = \frac{100 \times 34^2}{2885} = 40,07 \rightarrow A_s = 1,97 \text{ cm}^2 / m < A_{smin} = 6,00 \text{ cm}^2 / m \rightarrow \phi 10,0c.13$$

Armadura na face externa: $A_{smin} = 6,00 \text{ cm}^2 / m \rightarrow \phi 10,0 \text{c.} 13$

Estribos verticais: $A_{\text{swmin}} = 4,64 \text{ cm}^2 / m \rightarrow \phi 8,0 \text{ c.} 20 \text{ (2 } ramos)$

2 MESOESTRUTURA

2.1 Cargas verticais da superestrutura

 $R_g = 784,00 \text{ kN/longarina}$

Rq = 286,30 kN/longarina

RQ = 246,70 kN/longarina

2.2 Cargas verticais da mesoestrutura

Pilares P1=P2 = 31 kN

Travessas P1=P2 = 45 kN/m

2.3 Aparelho de apoio

Apoio P1=P2

Os aparelhos de apoio utilizados terão 300x400x48mm, sendo 3 camadas de elastômero com 10 mm e 4 chapas de aço com 3 mm.

$$\sigma_{max} = \frac{1,317}{0,30 \times 0,40} = 10,98MPa \rightarrow OK$$

$$k_a = \frac{1000 \times 0,30 \times 0,40}{3 \times 0,010} = 4000 \ kN / m$$
 por aparelho de apoio

2.4 Rigidez longitudinal

Pilares (Diâmetro = 100cm)

P1=P2:
$$k_p = \frac{3 \times 26072 \times 0,049}{1,60^3} = 935689 \ kN/m$$

· Conjunto pilar + aparelho de apoio

P1=P2:
$$\frac{1}{k_L} = \frac{1}{935689} + \frac{1}{2,5 \times 4000} \rightarrow k_L = 9894 \ kN/m$$

Rigidez transversal

Pórticos

A rigidez transversal dos pórticos foi obtida através do software de análise estrutural "Ftool".

P1=P2:
$$k_P = 3506311 \, kN / m$$

Conjunto pilar + aparelho de apoio

P1=P2:
$$\frac{1}{k_T} = \frac{1}{3506311} + \frac{1}{5 \times 4000} \rightarrow k_L = 19887 \ kN/m$$

2.6 Forças horizontais longitudinais

Frenagem e aceleração: $F = 0.05 \times 5 \times 38.00 \times 10.30 = 97.85 \, kN < 135.00 \, kN$

P1=P2:
$$H_L = \frac{135,00}{2} \times 0,50 = 33,75 \text{ kN/pilar}$$

Temperatura e retração: ΔT = 36°C (PDN = 15,00m à direita do apoio P1)

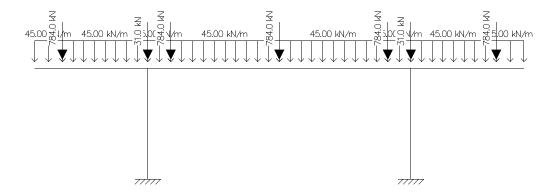
P1=P2:
$$H_L = 9894 \times 36 \times 10^{-5} \times 15{,}00 = 53{,}43 \text{ kN/pilar}$$

Empuxo unilateral de solo sobre uma cortina: Ea = 12,00 x 10,30 = 123,60 kN

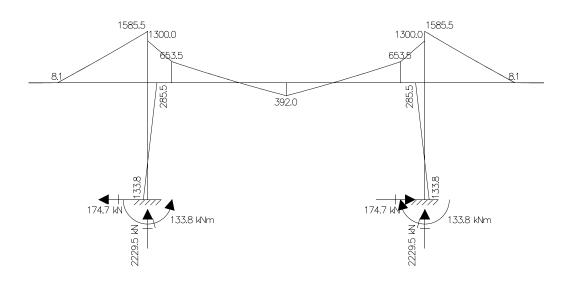
P1=P2:
$$H_L = \frac{123,60}{2} \times 0,50 = 30,90 \text{ kN/pilar}$$

Somatório de forças horizontais longitudinais

P1=P2: $H_L = 33,75 + 53,43 + 30,90 = 118,08 \text{ kN / pilar}$

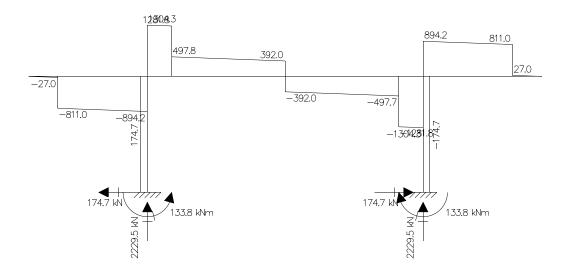

2.7 Forças horizontais transversais

• Vento: $H_w = 38,00 \times 2,80 \times 1,50 = 159,60 \text{ kN}$

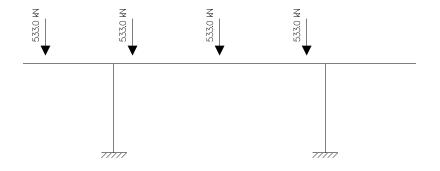

P1=P2: $H_V = 159,60 \times 0,50 = 79,80 \text{ kN/} \text{ apoio}$

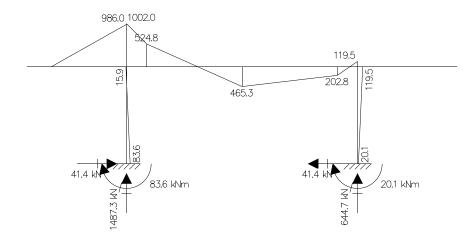
2.8 Esforços no pórtico P1=P2

Cargas permanentes

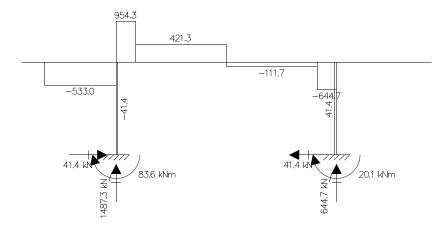


- Momentos fletores

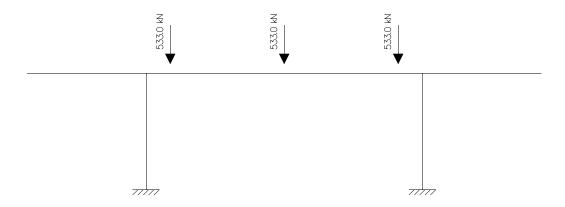


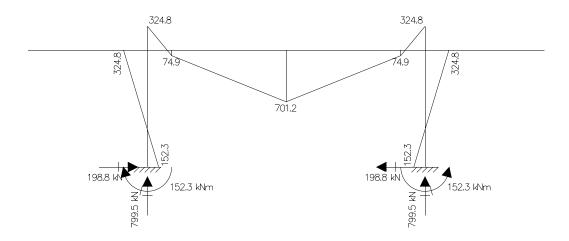


• Cargas móveis (Hipótese 1)



- Momentos fletores

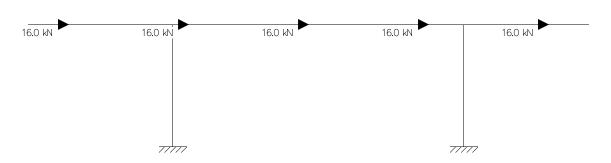


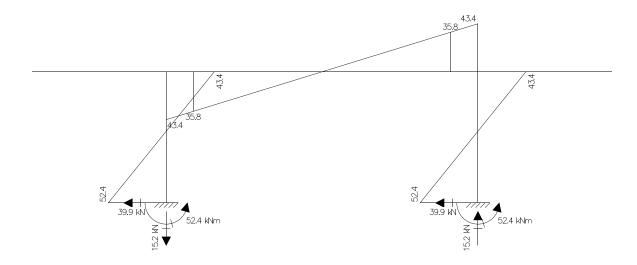


• Cargas móveis (Hipótese 2)

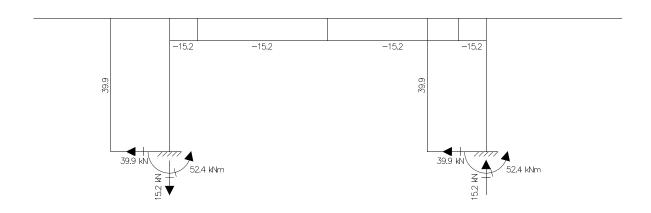


- Momentos fletores





Vento



- Momentos fletores

2.9 Dimensionamento travessa topo dos pilares

$$M_d^- = 1,35 \times 1586 + 1,50 \times 1045 = 3708,60 \text{ kN.m} = 370860 \text{ kN.cm}$$

$$k_c = \frac{120 \times 144^2}{370860} = 6,71 \rightarrow A_s^- = 62,07 \text{ cm}^2 > A_{smin} = 27,00 \text{ cm}^2 \rightarrow 13\phi 25,0$$

$$M_d^+ = 1,35 \times 392 + 1,50 \times 701 = 1580,70 \text{ kN.m} = 158070 \text{ kN.cm}$$

$$k_c = \frac{120 \times 144^2}{158070} = 15,74 \rightarrow A_s^+ = 25,80 \text{ cm}^2 > A_{smin} = 21,45 \text{ cm}^2 \rightarrow 5\phi 25,0$$

$$V_d = 1,35 \times 1304 + 1,5 \times 969 = 3214 \text{ kN}$$

$$V_{Rd2} = 0.27 \times 0.88 \times 21429 \times 1.20 \times 1.44 = 8798 \text{ kN} > V_d \rightarrow OK$$

$$V_{c} = 0.6 \times 1448 \times 1.20 \times 1.44 = 1501 \, kN$$

$$V_{sw} = 3214 - 1501 = 1713 \, kN$$

$$A_{sw} = \frac{1,713}{0,9 \times 435 \times 1,44} = 0,003039 \, m^2 / m = 30,39 \, cm^2 / m > A_{swmin} = 13,90 \, cm^2 / m$$

 $Adotado \rightarrow \phi$ 10,0c.10 (4 ramos) \rightarrow 1,50m no vão e 1,50m no balanço

 $Adotado \rightarrow \phi$ 10,0c.20 (4 ramos) \rightarrow Restante da travessa

$$A_{\text{spele}} = 0.10 \times 120 = 12.00 \text{ cm}^2 / m > 5.00 \text{ cm}^2 / m \rightarrow \phi 10.0 \text{c.} 16$$

Cálculo da fretagem

 $b_0 = 45 \text{ cm};$

b = 120 cm;

$$N_d = 1317,00 \times 1,40 = 1844 \text{ kN}$$

$$F_{td} = 0.3 \times 1.844 \times \left(\frac{1,20 - 0,44}{1,20}\right) = 0.280 MN$$

$$A_{s} = \frac{0,280}{435} = 0,000644m^{2} \rightarrow 6,44cm^{2} \rightarrow Adotado:8,00cm^{2} \rightarrow OK$$

2.10 Dimensionamento pilares

Armação: $10\phi16 \text{ mm (As} = 20.11 \text{ cm}^2)$

Propriedade seção bruta de concreto:

Área: $Ac = 5027 \text{ cm}^2$

Centro de gravidade: xcg = 40 cm

 $y_{cg} = 40 \text{ cm}$

Inércia em relação ao cg: Ix = 2010619 cm⁴

 $Iy = 2010619 \text{ cm}^4$

Taxa de armadura: $\rho_s = 0.40 \%$

Materiais: Concreto fck = 30 MPa

Aço fyk = 500 MPa

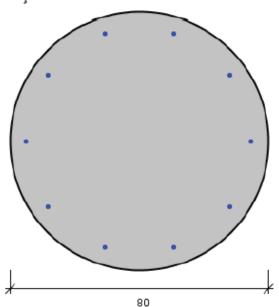
Tipo de vinculação: Pilar em Balanço

Comprimento: L = 160 cm

Índice de Esbeltez: $\lambda_x = 16$

 $\lambda_v = 16$

Estribos: ϕ 5,0c.15


Consideramos as combinações da seguinte forma:

$$F_d = 1.35 \times F_g + 1.50 \times F_q$$

$$F_{d} = 1,00 \times F_{q} + 1,50 \times F_{q}$$

$$F_d = 1.35 \times F_g + 1.00 \times F_q$$

Seção Transversal:

O software utilizado, PCalc, utiliza um coeficiente único. Para esse coeficiente, adotamos 1,4. Portanto, faremos a combinação apresentada acima, dividindo por 1,4, obtendo o valor característico que será usado no software.

	P1=	-P2
	Hip 1	Hip 2
Ng	2230	2380
Nq	1502	815
Nk	3760	3168
M Ttg	286	286
MTtq	-59	-368
M Ttk	233	-190
MTbg	134	134
Мтьq	-136	-205
M Tbk	-50	-124
MLk	283	283

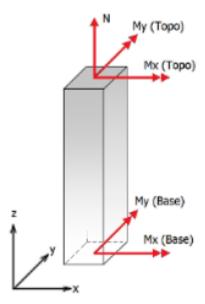


Figura: Convenção de sinais positivos dos esforços, N < 0 para compressão

Combinação	Nuk	Макх (Торо)	Maky (Topo)	Mık,x (Base)	Maky (Base)
1	-3760	233	0	-50	283
2	-3168	-190	0	-124	283

Tabela: Combinação de esforços, Unidades [kN, kN.m]

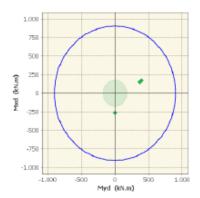


Figura: Diagrama de interação (Comb. 2)

Figura: Esforços solicitantes de cálculo (Comb. 2)

Determinação dos efeitos locais de 2º Ordem (Método pilar-padrão com rigidez 1 aproximada)

Momentos em torno do eixo x:

O momento total em torno da direção x é calculado pela expressão:

$$M_{d,tot,x} = \frac{-B + \sqrt{B^2 - 4 A C}}{2 A} = 153.9 \text{ kN.m}$$

Com:

 $A = 5 h_y = 5 \times 0.8 = 4 m;$

 $B = h_y^2 \text{ N}_{5d} - (\text{N}_{5d} \ell_{e}^2) / 320 - 5 \text{ hy cts M}_{61,A} = 0.8^2 \times 4435.2 - (4435.2 \times 3.2^2) / 320 - 5 \times 0.8 \times 0.85 \times 173.6 = 2106.3616 \text{ kN m}^2;$

 $C = -N_{sd} hy^2 cob M_{dl,A} = -4435.2 \times 0.8^2 \times 0.85 \times 173.6 = 418853.19168 kN^2 m^3;$

 $\alpha_b = 0.80 + 0.20 \text{ Mc} / \text{Ma} = 0.80 + 0.20 (-46.2) / 173.6 = 0.74677$, $\alpha_b \ge 0.85$.

Momentos em torno do eixo y:

O momento total em torno da direção y é calculado pela expressão:

$$M_{d,tot,y} = \frac{-B + \sqrt{B^2 - 4 A C}}{2 A} = 368.7 \text{ kN.m}$$

Com:

 $A = 5 h_x = 5 \times 0.8 = 4 m$;

 $B = hx^2 \text{ Nsd.} - (\text{Nsd.} \ell_0^2) / 320 - 5 \text{ hx cos.} \text{ Mdl.} \\ A = 0.8^2 \times 4435.2 - (4435.2 \times 3.2^2) / 320 - 5 \times 0.8 \times 0.9 \times 396.2 \\ = 1270.2816 \text{ kN m}^2;$

 $C = -N_{sd} \, h_{x}^{2} \, co_{b} \, M_{dl,A} = -4435.2 \times 0.8^{2} \times 0.9 \times 396.2 = 1012162.31424 \, kN^{2} \, m^{3};$

 $\alpha_b = 0.80 + 0.20 \text{ Mc} / \text{Ma} = 0.80 + 0.20 (198.1) / 396.2 = 0.9$, $\alpha_b \ge 0.85$.

<u>240</u> 170

3 INFRAESTRUTURA

3.1 Blocos P1=P2

Cargas verticais:

Peso próprio do bloco = 205 kN Peso próprio da viga = 26 kN Solo sobre a infra = 59 kN Peso da infra por pilar = 247 kN Cargas da meso (máx) = 3760 kN Cargas da meso (mín) = 2230 kN

Forças horizontais:

Longitudinal = 118 kN/pilar Empuxo do solo = 0 kN/pilar Transversal = 80 kN/apoio

Alturas dos centros elásticos

eL = 1,70 m α = 9,46 eT = 3,30 m inclinação = 0,167

Direção longitudinal = 5,10 m Direção transversal = 9,90 m

Cálculo das cargas na estacas

Hipótese de carga máxima

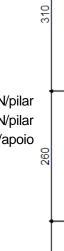
a) Devido ao esforço vertical V =

 $J_{V} = 5,8378$

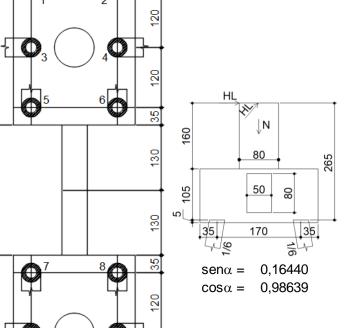
F = 677,02 kN F1=F2=F3=F4=F5=F6=F7=F8=F9=F10=F11=F12=677,02 kN

4007 kN/pilar

b) Devido ao esforço horizontal longitudinal HL = 118 kN/pilar


0 kN/pilar

240


JHL = 0,1081 Total = 118 kN/pilar

F = 179,563 kN F1=F3=F9=F11 = -179,56 kN

F2=F4=F10=F12 = 179,56 kN

310

c) Devido ao esforço horizontal transversal HT = 80 kN/apoio

JHT = 0,1081

F = 121,35 kN F5=F6 = -121,35 kN

F7=F8 = 121,35 kN

d) Devido ao momento causado pela força longitudinal HL = 118 kN/pilar

0 kN/pilar

Total = 118 kN/pilar

h = 2,65 m ri = 0,85

 $\Sigma ri^2 \times cos^2 \alpha = 1,406$

ML = -289,30 kN.m

F = -174,90 kN F5=F7 = 174,90 kN

F6=F8 = -174,90 kN

e) Devido ao momento causado pela força transversal HT = 80 kN/apoio

h = 2,65 m

 $\Sigma ri^2 \times cos^2 \alpha = 95,449$

MT = -578,55 kN.m

F1=F2 = 24,55 kN F3=F4 = 17,27 kN F11=F12 = -24,55 kN F9=F10 = -17,27 kN

f) Superposição dos efeitos

F1 = 522,01 kN F2 = 881,13 kN F3 = 514,73 kN F4 = 873,86 kN Carga máxima = 973,27 kN F5 = 730,57 kN F6 = 380,77 kN

F7 = 973,27 kN F8 = 623,47 kN F9 = 480,18 kN F10 = 839,31 kN F11 = 472,91 kN F12 = 832,03 kN

Hipótese de carga mínima

a) Devido ao esforço vertical V = 2477 kN/pilar

Jv = 5,8378

F = 418,50 kN F1=F2=F3=F4=F5=F6=F7=F8=F9=F10=F11=F12 418,50 kN

b) Devido ao esforço horizontal longitudinal HL = 118 kN/pilar

0 kN/pilar

JHL = 0,1081 Total = 118 kN/pilar

F = 179,56 kN F1=F3=F9=F11 = -179,56 kN

F2=F4=F10=F12 = 179,56 kN

c) Devido ao esforço horizontal transversal HT = 80 kN/apoio

JHT = 0,1081

F = 121,35 kN F5=F6 = -121,35 kN F7=F8 = 121,35 kN

d) Devido ao momento causado pela força longitudinal HL = 118 kN/pilar

0 kN/pilar

Total = 118 kN/pilar

h = 2,65 m ri = 0,85

 $\Sigma ri^2 x \cos^2 \alpha = 1,406$

ML = -289,30 kN.m

F = -174,90 kN F5=F7 = 174,90 kN

F6=F8 = -174,90 kN

e) Devido ao momento causado pela força transversal HT = 80 kN/apoio

h = 2,65 m

 $\Sigma ri^2 \times cos^2 \alpha = 95,449$

MT = -578,55 kN.m

F1=F2 = 27,88 kN F3=F4 = 20,61 kN F11=F12 = -27,88 kN F9=F10 = -20,61 kN

f) Superposição dos efeitos

F1 = 266,82 kN F2 = 625,95 kN F3 = 259,55 kN F4 = 618,67 kN Carga mínima = 122,25 kN

F5 = 472,05 kN F6 = 122,25 kN F7 = 714,75 kN F8 = 364,95 kN F9 = 218,33 kN F10 = 577,46 kN F11 = 211,06 kN F12 = 570,18 kN

Cálculo dos blocos

fck =	30 MPa			h = 110 cm
a) Direção I	ongitudinal		bw = Wo =	310 cm 0,517 m³
ML =	1924 kN.r	n	fctk,sup =	3,765 MPa
MLd =	2694 kN.r	n >	Md,min =	1556 kN.m
cob =	4,50 cm	kc =	12,209	
d=	103 cm	ks =	0,0236	
Asl =	61,72 cm ²	>	Asmin =	48,83 cm²
Adotado:	20 φ	20,0		
b) Direção tr	ransversal		bw =	240 cm
			Wo =	0,400 m ³
ML =	1890 kN.m		fctk,sup =	3,765 MPa
MLd =	2646 kN.m	>	Md,min =	1205 kN.m
cob =	4,50 cm	kc =	9,437	
d=	102 cm	ks =	0,0237	
Asl =	61,48 cm ²	>	Asmín =	37,80 cm ²
Adotado:	20 φ	20,0		

c) Armaduras de cintamento nas faces laterais do bloco

Asc = 12,32 cm² ireção

Asc = $6,16 \text{ cm}^2 \text{a face}$ Adotado: $5 \phi 12,5$

Viga de rigidez entre os blocos

Momento transversal no pé do pilar = 134,0 kN.m

Cargas sobre a viga: Peso próprio = 10,0 kN/m

Solo = 5,0 kN/m

Total = 15,0 kN/m

a) Dimensionamento à flexâo

 $b_{w} = 50 \text{ cm}$ h= 80 cm

M = 146,7 kN.m cob = 4,50 cm d= 74,4 cm

 $M_{sd} = 198,0 \text{ kN.m} > M_{dmin} = 160,7 \text{ kN.m}$

kc = 17,21 ks = 0,0234

 $A_s = 6.23 \text{ cm}^2$ $A_{smin} = 6.00 \text{ cm}^2$ Adotado: $4 \phi 16.0$

b) Esforço cortante

Asw min = $5.79 \text{ cm}^2/\text{m}$ Adotado: $\phi 8.0 \text{ c. } 17$ 2 ramos

c) Armadura de pele

As = $5,00 \text{ cm}^2$ Adotado: $\phi 10,0 \text{ c. } 16$

3.2 Dimensionamento geotécnico das estacas

Para a definição da solução de fundação a ser utilizada na OAE Ponte sobre o Rio Turvo, foram consideradas as sondagens mistas SM-01 a SM-04.

Considerando os perfis estratigráficos apresentados nos boletins individuais das sondagens representativas da região, a solução em fundação direta foi descartada pela baixa capacidade de suporte do solo nos metros iniciais. Dentre as alternativas de estacas tecnicamente viáveis, foram estudadas as alternativas em estacas pré-moldadas e raiz. A primeira foi descartada, pois durante as camadas de solo apresentadas no perfil, as estacas não atingem a capacidade de suporte necessária. Desta forma, adotamos a solução em estacas tipo raiz com 400 mm de diâmetro em solo e 310mm em rocha. O comprimento delas foi avaliado individualmente por apoio, pelo método Decourt-Quaresma. A carga necessária de suporte, obtida pelo dimensionamento estrutural, é de **973 kN**. Após o término das camadas de solo, os primeiros 5,00m de rocha são extremamente fraturadas. Por isto, adotaremos um comprimento mínimo em rocha de 5,00m, apoiando a ponta da estaca em rocha sã.

• Apoio P1 (SM-01)

Parâmetro das estacas raiz d= 40cm em solo								
Área lateral	1,26 m²/m							
Área ponta	0,13 m²							
Parâmetro das estacas raiz d= 31cm em rocha								
Área lateral	0,97 m²/m							
Área ponta	0,08 m²							

		R	ESISTÊNCIAS			
Cotas (m)	NSPT	R _{L a cada metro} (kN)	R _{L acumulada/1,3} (kN)	C (kPa)	R _{P/4} (kN)	R (kN)
1	4	29	23			
2	4	29	45	120	6	51
3	8	46	81	120	6	87
4	4	29	103	120	6	109
5	3	25	122	120	6	128
6	9	50	161	400	21	182
7	5	34	187	400	23	210
8	4	29	209	120	5	215
9	5	34	235	120	5	240
10	5	34	261	120 6		267
11	6	38	290	200	15	305
12	13	67	342	200	18	359
13	9	50	380	200	19	400
14	9	50	419	200	20	439
15	14	71	474	200	24	498
16	15	75	532	200	25	557
17	11	59	577	200	48	625
18	50	172	709	400	139	849
19	50	172	841	400	188	1030
20	50	172	974	400	188	1162
21	50	172	1106	400	188	1295
22	50	172	1239	400	188	1427

Comprimento em solo

Comprimento final, com no mínimo 5 metros em rocha fraturada

• Apoio P1 (SM-02)

Parâmetro das estacas raiz d= 40cm em solo							
Área lateral 1,26 m²/m							
Área ponta	0,13 m²						
Parâmetro das estacas raiz d= 31cm em rocha							
Área lateral	0,97 m²/m						
Área ponta	0,08 m²						

RESISTÊNCIAS											
Cotas (m)	NSPT	R _{L a cada metro} (kN)	R _{L acumulada/1,3} (kN)	C (kPa)	R _{P/4} (kN)	R (kN)					
1	3	25	19								
2	4	29	42	120	5	47					
3	7	42	74	120	6	81					
4	6	38	103	120	8	111					
5	8	46	139	120	8	146					
6	7	42	171	120	7	178					
7	4	29	193	120	6	200					
8	6	38	222	120	6	228					
9	6	38	251	120	7	258					
10	7	42	284	120	8	291					
11	8	46	319	120	8	327					
12	6	38	348	120	9	357					
13	9	50	387	120 9		396					
14	9	50	425	120	9	435					
15	7	42	458	120	9	467					
16	9	50	496	120	9	505					
17	7	42	528	120	9	537					
18	8	36	556	120	25	580					
19	50	172	688	400	136	824					
20	50	172	821	400	188	1009					
21	50	172	953	400	188	1141					
22	50	172	1085	400	188	1274					
23	50	172	1218	400	188	1406					

Comprimento em solo

Comprimento final, com no mínimo 5 metros em rocha fraturada

Apoio P2 (SM-03)

Parâmetro das estacas raiz d= 40cm em solo								
Área lateral 1,26 m²/m								
Área ponta	0,13 m²							
Parâmetro das estacas raiz d= 31cm em rocha								
Área lateral	0,97 m²/m							
Área ponta	0,08 m ²							

	RESISTÊNCIAS											
Cotas (m)	N SPT	R _{L a cada metro} (kN)	R _{L acumulada/1,3} (kN)	C (kPa)	R _{P/4} (kN)	R (kN)						
1	6	38	29									
2	7	42	61	120	8	69						
3	8	46	97	120	8	105						
4	7	42	129	120	7	136						
5	4	29	151	120	5	156						
6	2	21	168	120	7	174						
7	12	63	216	120	9	225						
8	10	54	258	120	11	268						
9	6	38	287	120	8	295						
10	6	38	316	120	6	322						
11	5	34 342		120	6	348						
12	5	34	367	120	23	390						
13	50	222	538	400	132	670						
14	50	222	709	400	188	897						
15	50	222	880	400	188	1068						
16	50	222	1050	400	188	1239						
17	50	222	1221	400	188	1410						

Comprimento em solo

Comprimento final, com no mínimo 5 metros em rocha fraturada

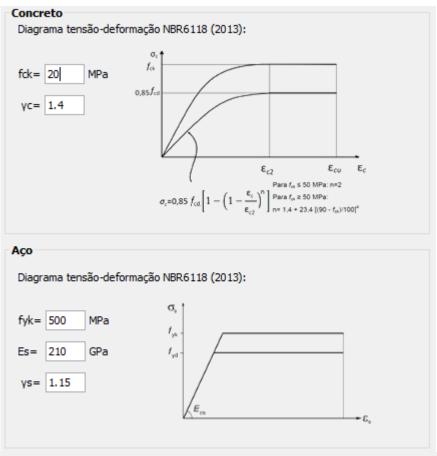
• Apoio P2 (SM-04)

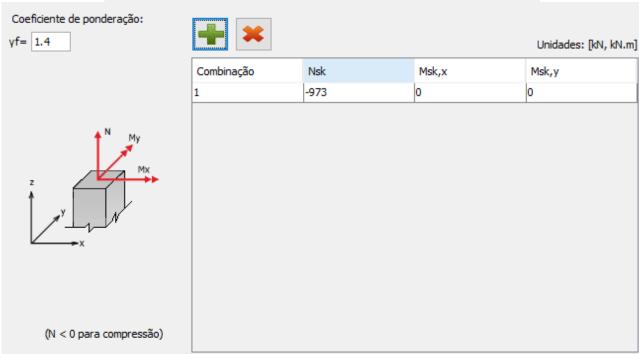
Parâmetro das estacas raiz d= 40cm em solo								
Área lateral 1,26 m²/m								
Área ponta	0,13 m²							
Parâmetro das estacas raiz d= 31cm em rocha								
Área lateral	0,97 m²/m							
Área ponta	0,08 m ²							

RESISTÊNCIAS											
Cotas (m)	NSPT	R _{L a cada metro} (kN)	R _{L acumulada/1,3} (kN)	C (kPa)	R _{P/4} (kN)	R (kN)					
1	3	25	19								
2	6	38	48	120	6	54					
3	6	38	77	120	8	85					
4	8	46	113	120	7	120					
5	5	34	139	120	6	145					
6	3	25	158	120	6	164					
7	7	42	190	120	7	197					
8	8	46	226	120	9	235					
9	9	50	264	120	11	275					
10	12	63	313	120	10	322					
11	5	34	338	120	12	350					
12	14	71	393	120	13	406					
13	16	80	454	400	101	555					
14	50	222	625	400	146	771					
15	50	222	796	400	188	984					
16	50	222	967	400	188	1155					
17	50 222 1137		1137	400	188	1326					
18	50	172	1270	400	188	1458					

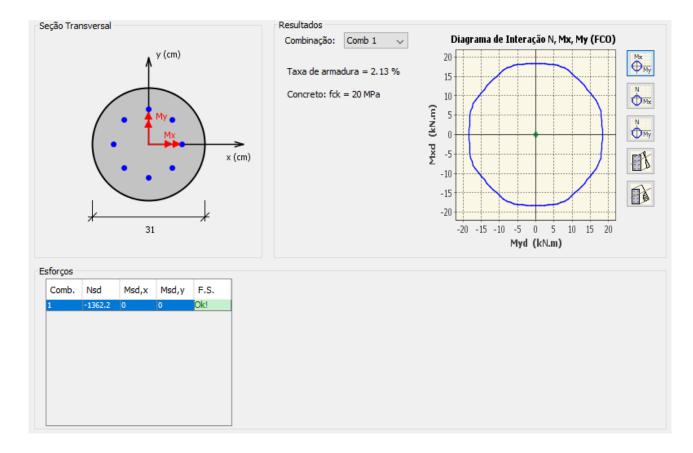
Comprimento em solo

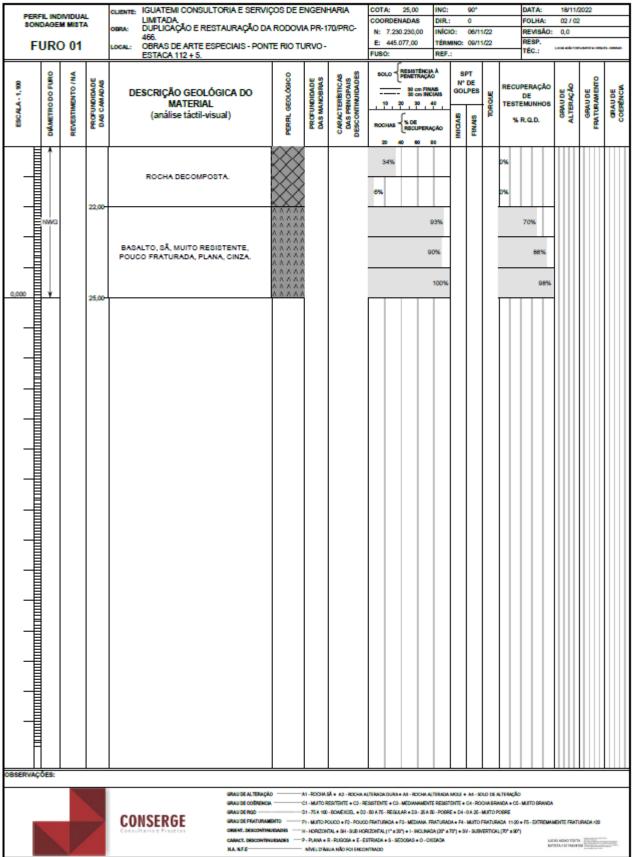
Comprimento final, com no mínimo 5 metros em rocha fraturada


Longitudinalmente, as sondagens SM-01 e SM-02 estão posicionadas na mesma estaca, assim como as SM-03 e SM-04. Dito isto, iremos comparar as sondagens que estão na mesma posição e consideraremos a pior situação. Portanto, comparando a SM-01 com a SM-02, para o apoio P1, adotaremos o comprimento de 18,00m em solo e 5,00m em rocha. Comparando SM-03 e SM-04, para o apoio P2, adotaremos 13,00m em solo e 5,00m em rocha.


3.3 Dimensionamento estrutural das estacas

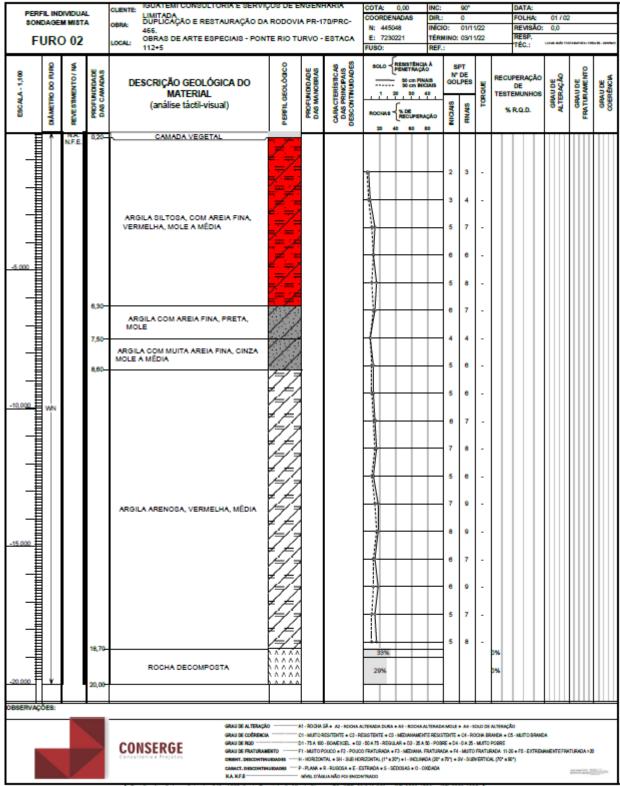
As estacas serão solicitadas exclusivamente a compressão, de 973 kN.

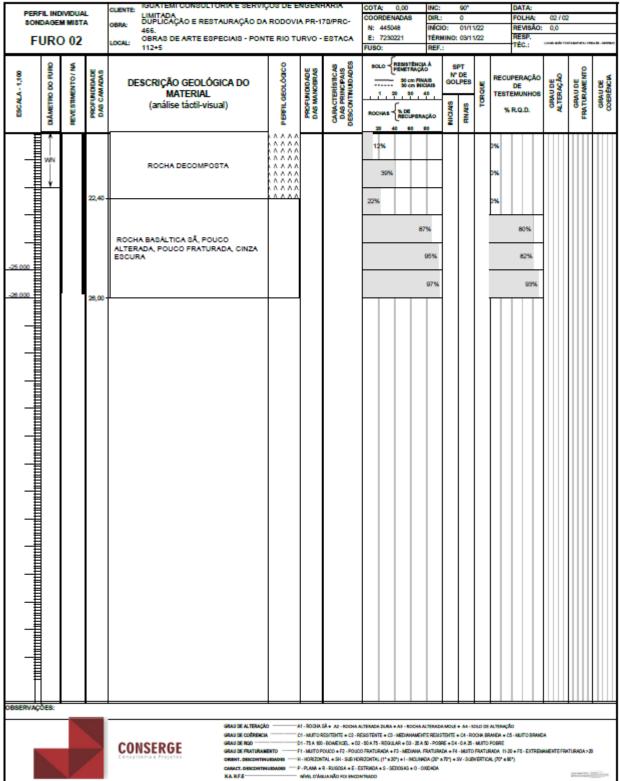


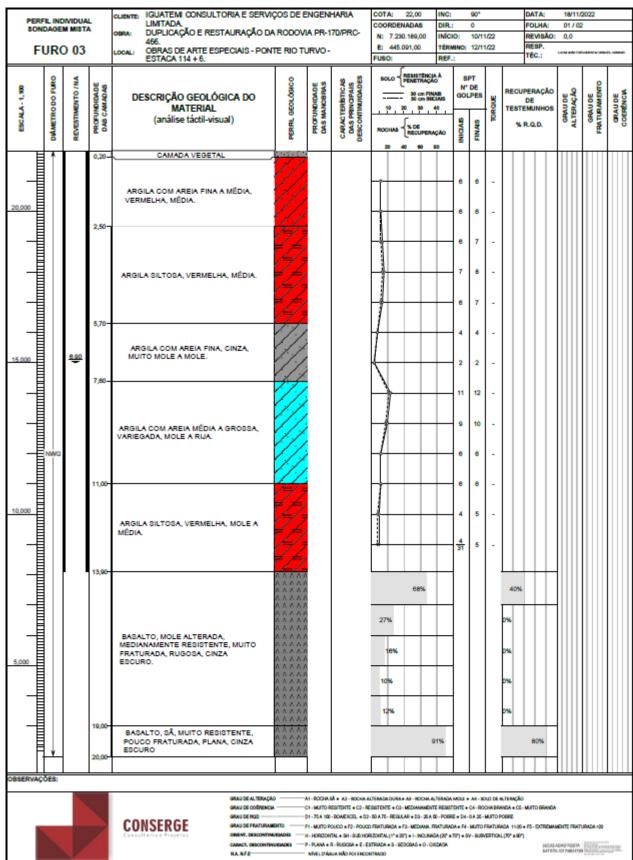


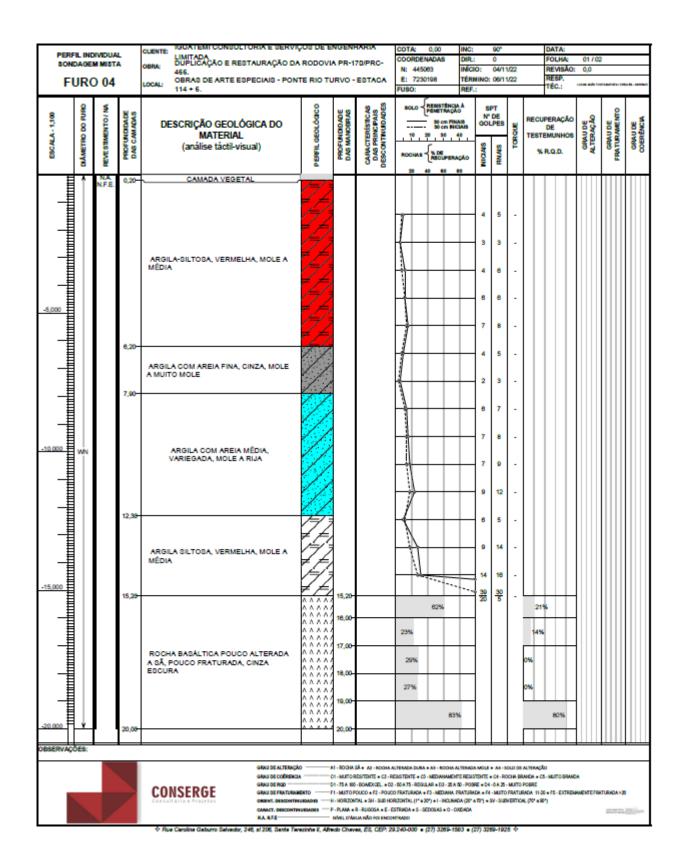
ANEXO - BOLETINS DE SONDAGENS

PERFIL INDIVIDUAL SONDAGEM MISTA				LIMITADA.			COORDENADAS DIR: 0 FOLHA: 01/0			18/11/					
FL	URC	01		466. LOGAL: OBRAS DE ARTE ESPECIAIS - PONTE RIO TURVO -			N: 7.230.230,00 E: 445.077,00	INICIO: TÉRMINO			RESP.	0,0	NAME OF THE OWNER.	TL 100540	
				ESTACA 112 + 5.				FUSO:	REF.:			TÉC.:			
ESCALA - 1, 100	DIÁMETRODO FURO	REVESTIMENTO / NA	PROFUNDIDADE DAS CAMADAS	DESCRIÇÃO GEOLÓGICA DO MATERIAL (análise táctil-visual)	PERRL GEOLÓGICO	PROFUNDIDADE DAS MANOBRAS	CARACTERISTICAS DAS PRINCIPAIS DESCONTINUIDADES	ROCHAS (N.DE RECUPERA	AS GO	FINAS SECTIONS	TORQUE	RECUPERAÇÃO DE TESTEMUNHOS % R.Q.D.	GRAUDE ALTERAÇÃO	GRAUDE	COERENCIA
	1		0,10-	CAMADA VEGETAL	777					П					
			2,00-	ARGILA COM AREIA MÉDIA A GROSSA, VERMELHA, MOLE A MÉDIA.				1	8	9					
20,000	NWG		5,35-	ARGILA SILTOSA, VERMELHA, MOLE A MÉDIA.					3 7 4 15	8					
1				MATAÇÃO.	$Q_{\lambda}Q$			M + 1	4	3					
		8.40	7,10-	ARGILA ORGÁNICA, PRETA, MOLE A MÉDIA.					33	33					
				AREIA FINA COM ARGILA, CINZA, POUCO COMPACTA A MEDIANAMENTE COMPACTA.	//			1	3	5 32	-				
15,000	NWG		12,00-	ARGILA ARENOSA, VERMELHA, MOLE A MÉDIA.					5 4	5 5 5 27 8					
10,000			18,00-	SILTE-ARENOSO, MARROM, POUCO COMPACTO A MEDIANAMENTE COMPACTO.					7 7 10 11 8	13 9 28					
5,000	¥		20,00-	ROCHA DECOMPOSTA.				35%				0%			
OBSERVAÇ	ŌES:														
				CARACT, DISCONTO NA. N.F.E	MONTO PI MENTO PI MUDADES PI	- MUITO RE - 75A 180- - MUITO PO - HORIZONI - PLANA + R NIVEL CLÁSS	ESITENTE + C2 - RE - BOAEHOEL + C2 DUCO + F2 - POUCE TAL + SH - SUB HOS R - RUGOSA + E - EI UA NÃO FOI ENCO	LITERADA DURA + AB - ROCHA A ESISTENTE + CI - MEDIANAMENI - SO A 75 - REGULAR + DB - 25 A D FRATURION + FB - MEDIANA F REZONTAL (1° ± 20°) + 1 - INCLINA STRADA + S - SEDOSAS + O - OI MERADO	E RESISTENTE EI-POERE • DI RATURADA • FI DA (20° ± 70°) • SDADA	• CH-ROX I-OA 25-II I-MUITOF SV-SUBV	OHABRA MUITO P FRATURA ERTICAL	NDA + CS-MUITO BRANDA OBRE NDA 11:20 + FS- EXTREMAN (70" + 90")	ONTE FRATI	PERSONAL PROPERTY.	 SPERING









PERFIL INDIVIDUAL CUENTE: IGUATEM CONSULTORIA E SERVIÇOS DE ENGENHARIA LIMITADA.							COTA	_	2,00	INC:		90°			DATA		18/11/							
SONE	DAGE	M MISTA	4	OBRA:	DUPLIC	AÇÃO E F	RESTAU	IRAÇÃO D	A RODOV	IA PR-1	70/PRC-		7.230.10		INÍCI		10/11/	722		FOL:		02 / 02		
FI	JRC	03		LOCAL:	466. OBRAS	DE ARTE	ESPEC	IAIS-PON	TE RIO TI	JRVO-		E:	445.091				12/11			RESP		an etca		
	,,,,	, 00		LOCAL		114+6.			1210011			FU80):		REF.					TÉC.				es consule
ESCALA - 1,900	DWMETRODO FURO	REVESTIMENTO / NA	PROFUNDIDADE DAS CAMADAS	DE		O GEOL MATERIA se táctil-	\L		PERFIL GEOLÓGICO	PROFUNDIDADE DAS MANOBRAS	CARACTERISTICAS DAS PRINGPAIS DESCONTINUIDADES	900 		DE SOUPER	AUS CLAUS 40		PES PES	TOROUE	TEST	PERA DE EMUN R.Q.D	нов	GRAUDE ALTERAÇÃO	GRAUDE	COERENCIA
	NWG				ALTO, SĂ CO FRATU JRO				A A A A A A A A A A A A A A A A A A A						93%						0%			
0,000	V		22,00						A A A A A					Ī	90%						98%			
OBSERVAÇÕ																								
S. S	Lui:			CO	NSER	GE (10)	GR GR GR GR GR	MU DE ALTERAÇÃ MU DE COÉRENCO MU DE FRATURAM MENT, DESCONTIN MACT, DESCONTIN A. N.F.E.	ENTO	C1 - MUITO R C1 - 75 A 100 P1 - MUITO P1 H - HORIZON P - PLANA + 1	SI + A2 - RODHAA SSITENTE + C2 - R - BOAENCEL + C2 DUCO + F2 - POUG TAL + SH - SUB HO R - RUGOSA + E - E UA NÃO FOI ENCO	ESISTENTI - 50 A 75- D FRATUR REZONTAL STRIADA «	E + C3-ME REGULAR KDA + F3-I (1" + 20") +	OUNNAMEN • DO - 25 A MEDIANA. I- NOLIN	TE RESIST SD - POER FRATURAC KDA (20° s.)	E + D4 - D4 + F4 -	OH-ROO OA 25-M MUITO FI	AUTO PO RATURA	IDA + CS IGRE DA 11-20	• F5- EX	TREMAM	DATE FRATI		

PERFIL INDIVIDUAL SONDAGEM MISTA GUBERTE: IGUATEMI CONSULTORIA E SERVIÇOS DE ENGENHARIA LIMITADA DUPLICAÇÃO E RESTAURAÇÃO DA RODOVIA PR-170/PRC-								COTA: 0,00 COORDENADAS	INC: DIR.:	90°		DATA: FOLHA:	02/0	2	
1			`	OBRA: DUPLICAÇÃO E RESTAURAÇÃO 466. OBRAS DE ARTE ESPECIAIS - PO				N: 445063 E: 7230198	INÍCIO: TÉRMINO	04/11		REVISÃO RESP.	0,0		
FU	JRC	04		LOCAL: 114 + 6.	NIERIOI	URVU -	ESTAGA	FUSO:	REF.:	. 001	Vee	TÉC.:	TÉC.: LIGHT STREET STREET		14 N - 10 (16 A)
ESCALA - 1,100	DIÂMETRO DO RURO	REVESTIMENTO / NA.	PROFUNDIDADE DAS CAMADAS	DESCRIÇÃO GEOLÓGICA DO MATERIAL (análise táctil-visual)	озвоговоговсо	PROFUNDIDADE DAS MANOGRAS	CANACTERISTICAS DAS PRINCIPAIS DESCONTINUDADES	SOLO - RESENTANCI 	AIS GO	SPT DE LPES	TOROUE	RECUPERAÇÃO DE TESTEMUNHOS % R.Q.D.	8 9	GRAU DE FRATURAMENTO	GRAUDE COERÊNCIA
	,			ROCHA BASÁLTICA SÃ, POUCO		21,00-			10%			89%			
	ļ			ALTERADA, POUCO FRATURADA, CINZA ESCURA		22,00			92%			87%			
-23,000			23,00			1									
-21000															
OBSERVAÇÕ	E8:														
				GRAU DE ALTER GRAU DE COÉRE				KITERADA DURA + AR - ROCHA ESISTENTE + CO - MEDIANAMEN					DA.		
				CONSERGE GRAUDE FRATU	NAMENTO	101-75 A 100 F1-MUTOR	0-BOMEXCEL +00 POUCO + F2 - POUC	-50 A 75 - REGULAR + D3 - 25 A O FRATURADA + F3 - MEDIANA.	50 - POSRE + 0 FRATURADA + F	4-0A25- 4-MUTO	FRATUS	POBRE RADA 11-20 + FS-EXTRE		TURADA > X	,
				Consultaria e Projetos ORENT. DESCO	THURNOIS	H-HORIZON	TAL + SH - SUB HO	RZONTAL (1° ± 30°) ± 1 - INCLINA STRIADA ± 5 - SEDOSAS ± 0 - 0	KOA (20" a 70") a						
		1		NA. NFS • Flue Caroline Gaburro Salvador, 246, si 206, Sante		MART DAY	HUA HATO POI ENCO	MTKADO							

63

D – MEMÓRIA DE CÁLCULO ESTRUTURAL DO VIADUTO DE TURVO

1 SUPERESTRUTURA

1.1 Longarinas

Para o dimensionamento, as longarinas foram consideradas isostáticas. Serão moldadas no local, em concreto protendido, com protensão executada *in loco*. Posteriormente serão unificadas às lajes, de modo a criar uma seção composta em concreto armado e protendido, com o intuito de resistir aos esforços solicitantes.

As características das seções, verificações de tensões e dimensionamentos apresentados ao longo da memória foram obtidos através de planilhas em Excel, programadas pelo autor desta memória.

Serão apresentados todos os procedimentos necessários para o dimensionamento das longarinas protendidas, incluindo o levantamento de ações que solicitam a estrutura, as características da seção, verificações das tensões em serviço e estado limite último.

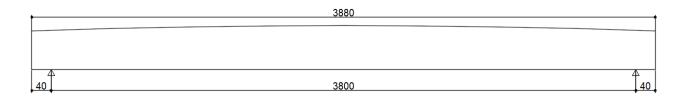


Figura 8 - Esquema estrutural

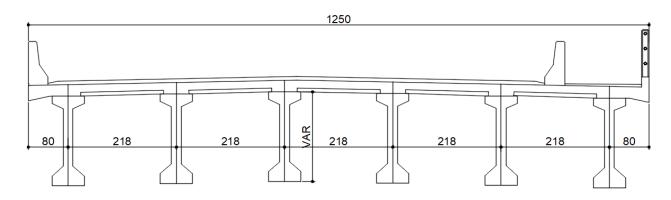
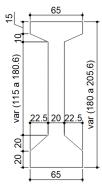



Figura 9 - Seção transversal da obra

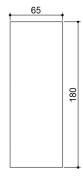


Figura 10 - Seção das longarinas nos vãos e apoios respectivamente

Posteriormente ela será unificada às lajes de modo a criar uma seção composta em concreto armado e protendido com o intuito de resistir os esforços solicitantes.

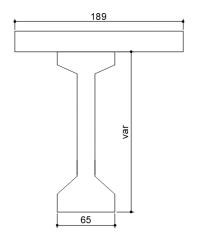


Figura 11 - Seção composta (Laje+longarina)

As características geométricas foram calculadas através de planilhas em Excel, diferenciando as seções isoladas e compostas, em cada seção da viga, visto que elas variam a altura ao longo do comprimento.

			Viga is	solada					
Características	Seções								
	0	1	2	3	4	5			
Ac (m²)	0,585	0,605	0,619	0,629	0,635	0,637			
I (m4)	0,229	0,264	0,290	0,310	0,322	0,326			
ys (m)	0,949	1,001	1,038	1,063	1,079	1,084			
yi (m)	0,851	0,899	0,932	0,957	0,971	0,976			
ylaje (m)	-	-	-	-	-	-			
Ws (m³)	0,242	0,264	0,280	0,291	0,298	0,301			
Wi (m³)	0,27	0,294	0,311	0,324	0,332	0,334			
Wlaje (m³)	_	-	-	-	-	-			

Figura 12 - Características geométricas viga isolada

			Viga co	mposta					
Características	Seções								
	0	1	2	3	4	5			
Ac (m²)	0,961	0,981	0,995	1,005	1,011	1,013			
I (m4)	0,490	0,555	0,603	0,639	0,661	0,668			
ys (m)	0,532	0,573	0,602	0,622	0,635	0,639			
yi (m)	1,268	1,327	1,368	1,398	1,415	1,421			
ylaje (m)	0,762	0,803	0,832	0,852	0,865	0,869			
Ws (m³)	0,921	0,969	1,002	1,026	1,041	1,046			
Wi (m³)	0,387	0,418	0,441	0,457	0,467	0,470			
Wlaje (m³)	0,643	0,691	0,725	0,749	0,764	0,769			

Figura 13 - Características geométricas viga composta

As tensões nas seções foram calculadas considerando as perdas de protensão, imediatas e progressivas nas armaduras ativas, obedecendo as solicitações normativas exigidas pela NBR 6118/2014.

As perdas de protensão foram estimadas supondo os seguintes parâmetros:

- Idade mínima para protensão = 10 dias;
- Abatimento do concreto (Slump) = 0-4;
- Umidade do ambiente = 70%;
- Temperatura média de cura = 20°C;
- Tipo de cimento = CPV-ARI.

1.1.1 Cargas permanentes por longarina

- Fase 1:

Peso próprio da longarina no apoio: g1 = 0,585 x 25 = 14,62 kN/m

Peso próprio da longarina no meio do vão: g1 = 0,637 x 25 = 15,92 kN/m

Carga concentrada nas extremidades: G1 = 11,70 kN

- Fase 2:

Peso próprio da laje: g2 = 2,18 x 0,23 x 25 = 12,54 kN/m

Transversinas de apoio (extremidade): $G_2 = 0.25 \times 1.62 \times 1.98 \times 25 = 20.05 \text{ kN}$

- Fase 3:

Pavimentação pista de rolamento: 10,00 x 0,07 x 25 = 17,50 kN/m

Capeamento passeio: $1,55 \times 0,04 \times 25 = 1,55 \text{ kN/m}$

Barreiras New-jersey: 0,23 x 2 x 25 = 11,50 kN/m

Guarda-corpo: 2,00 kN/m

Total: $g_3 = 17,50 + 1,55 + 11,50 + 2,00 = 32,55 / 5 = 5,43 \text{ kN/m}$

1.1.2 Cargas móveis por longarina segundo NBR 7188/2013

Para a obtenção das cargas móveis foi utilizado o trem-tipo 45 da referida norma, considerando este, homogeneizado. A repartição transversal das cargas móveis fica a cargo da laje. As rigidezes das longarinas no meio do vão equivalem a k = 17592 kN/m Foram considerados coeficientes de repartição transversal com a utilização do programa computacional "Ftool". A partir desses, foram plotadas as linhas de influência e carregadas suas áreas positivas de modo a extrair o trem-tipo de cálculo para a longarina mais solicitada.

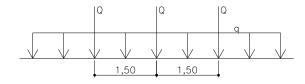

r11 = (0,873	r 21 =	0,207	r 31 =	-0,035	r41 =	-0,04	r 51 =	-0,010	r 61 =	0,005
r 12 = (0,207	r 22 =	0,534	r 32 =	0,265	r 42 =	0,028	r 52 =	-0,024	r 62 =	-0,010
r 13 = ·	-0,035	r 23 =	0,265	r33 =	0,525	r 43 =	0,257	r 53 =	0,028	r 63 =	-0,04
r14 = -	-0,04	r 24 =	0,028	r 34 =	0,257	r44 =	0,525	r 54 =	0,265	r 64 =	-0,035
r 15 = ·	-0,010	r 25 =	-0,024	r 35 =	0,028	r 45 =	0,265	r 55 =	0,534	r 65 =	0,207
r 16 = (0.005	r26 =	-0.010	r36 =	-0.040	r 46 =	-0.035	r 56 =	0.207	r66 =	0.873

Figura 14 - Coeficientes de repartição transversal da longarina mais solicitada

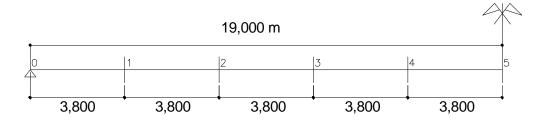
- Coeficiente de impacto adicional (φ)

$$\varphi = 1 + 1,06 \times \left(\frac{20}{L + 50}\right) = 1 + 1,06 \times \left(\frac{20}{38 + 50}\right) = 1,241$$

- Trem-tipo de cálculo

No meio do vão: $Q = 60 \times 1,241 \times (0,842 + 0,231) = 79,90 \text{ kN}$

$$q = 5 \times 1,241 \times 1,74 = 10,80 \text{ kN/m}$$



Junto aos apoios: $Q = 60 \times 1,241 = 74,46 \text{ kN}$

$$q = 5 \times 1,241 \times 2,18 = 13,53 \text{ kN/m}$$

1.1.3 Cálculo dos esforços solicitantes

Esforços devido às cargas permanentes

Seções	Mg1 (kN.m)	M _{g2} (kN.m)	Mg3 (kN.m)	M∑g (kN.m)	Vg1 (kN)	Vg2 (kN)	Vg3 (kN)	VΣg (kN)
0	0,00	0,00	0,00	0,00	294,40	238,30	103,20	635,90
1	1011,90	814,80	352,80	2179,50	237,90	190,60	82,50	511,00
2	1805,80	1448,60	627,30	3881,70	179,70	143,00	61,90	384,60
3	2376,50	1901,30	823,30	5101,10	120,50	95,30	41,30	257,10
4	2720,40	2172,90	940,90	5834,20	60,40	47,70	20,60	128,70
5	2835,20	2263,50	980,10	6078,80	0,00	0,00	0,00	0,00

Esforços devido às móveis

Seções	Mq (kN.m)	Vq+ (kN)	V _q - (kN)
0	0,00	435,40	0,00
1	1485,60	372,50	-16,60
2	2633,00	313,60	-46,70
3	3442,30	258,90	-80,90
4	3937,50	208,20	-119,30
5	4106,60	161,70	-161,70

Esforços de cálculo

Seções	Mg (kN.m)	Mq (kN.m)	M _d (kN.m)	Vg (kN)	Vq (kN)	Vd (kN)
0	0,00	0,00	0	635,90	435,40	1511,57
1	2179,50	1485,60	5170,73	511,00	372,50	1248,60
2	3881,70	2633,00	9189,80	384,60	313,60	989,61
3	5101,10	3442,30	12049,94	257,10	258,90	735,44
4	5834,20	3937,50	13782,42	128,70	208,20	486,05
5	6078,80	4106,60	14366,28	0,00	161,70	242,55

 $S_d = 1,35 \times S_g + 1,50 \times S_q$

1.1.4 Traçado dos cabos

Foram adotados 4 cabos compostos de 12 □□12,7 CP-190 RB, com ancoragens ativas em ambas as extremidades. As bainhas serão metálicas com diâmetro nominal de 70mm. A escolha da quantidade de cabos e cordoalhas foi feita a partir da análise dos esforços solicitantes e das tensões por eles geradas, de modo a não ultrapassar os limites estabelecidos pela NBR 6118/2014.

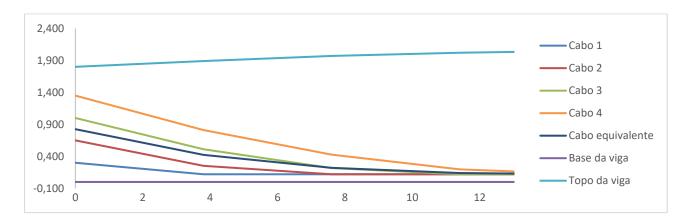


Figura 15 - Elevação dos cabos

	Posicionamento dos cabos (m)											
$\mid \times \mid$	S0		S1		S2		S3		S4		S	5
	Х	У	Х	у	Х	У	Х	У	Х	у	Х	у
Cabo 1	0,000	0,300	3,800	0,120	7,600	0,120	11,400	0,120	15,200	0,120	19,000	0,120
Cabo 2	0,000	0,650	3,800	0,253	7,600	0,120	11,400	0,120	15,200	0,120	19,000	0,120
Cabo 3	0,000	1,000	3,800	0,511	7,600	0,218	11,400	0,120	15,200	0,120	19,000	0,120
Cabo 4	0,000	1,350	3,800	0,812	7,600	0,428	11,400	0,197	15,200	0,120	19,000	0,120
Cabo eq.	0,000	0,825	3,800	0,424	7,600	0,221	11,400	0,139	15,200	0,120	19,000	0,120

1.1.5 Determinação da tensão inicial

Segundo a NBR 6118/2014, os limites de tensão para as cordoalhas são:

$$\sigma_{pi} \le \begin{cases} 0.74 \times f_{ptk} = 1406 \ MPa \\ 0.82 \times f_{pyk} = 1402 \ MPa \end{cases}$$

Adotando cabos com 12 cordoalhas de 12,7 CP-190RB, temos:

$$A_p = 0.987 \times 12 = 11.84 \text{ cm}^2 / \text{m}$$

$$P_i = 140,2 \times 11,84 = 1659,97 \ kN/cabo \rightarrow p/4 \ cabos = 6643,10 \ kN$$

1.1.6 Perdas imediatas

1.1.6.1 Perdas por atrito

$$P_0 = P_i \times (1 - (\mu \times \Sigma \alpha + \beta \times \mathbf{x}))$$

Pi = 6643,1 $\mu = 0,25$

 $\beta = 0,0025$

Comprimento parabólico do cabo a partir da seção 0: a = 15,2 m

Seção	Trecho x (m)	a-x (m)	α (rad)	Σα	Po (kN)
0	0	15,200	0,092	0,000	6643,1
1	3,8	11,400	0,053	0,039	6562,6
2	7,600	7,600	0,027	0,066	6503,6
3	11,4	3,800	0,003	0,089	6450,6
4	15,200	0,000	0,000	0,092	6429,8
5	19	0,000	0,000	0,092	6414,6

Alongamento previsto durante a protensão (ΔL) = 13,02cm para cada lado Alongamento total do cabo = 26,05cm

1.1.6.2 Perdas por acomodação da ancoragem

 $\delta = 6 \, \text{mm}$

 $A_p = 47,38 \text{ cm}^2$

 $\sigma_{pi} = 1402 \text{ MPa}$

Trecho	Área (m²)
0-1	152,86
1-2	336,112
2-3	504,333
3-4	275,63
4-5	260,822
Σ	1529,75

Seção	Po (kN)
0	6047,9
1	6128,4
2	6187,3
3	6240,4
4	6261,1
5	6276,4

 $A = 5685,12 \text{ m}^2$

138,19 $\Delta Pm =$

1.1.6.3 Perdas por encurtamento elástico

 $Ac = 0.585 \text{ m}^2$ I = 0.229 m4 Ep/Ec = 5.647 n = 4 cabos

Seção	e _p (m)	σ _{cp} (kN/m²)	σεg (kN/m²)	Δσ _p (kN/m²)	ΔP (kN)	Po (kN)
0	0,026	-10356,1	0,0	-21930,0	103,9	5944,0
1	0,427	-15347,0	1883,3	-28510,8	135,1	5993,3
2	0,630	-21265,8	4954,7	-34540,3	163,6	6023,7
3	0,712	-24443,1	7370,8	-36152,2	171,3	6069,1
4	0,731	-25280,7	8665,3	-35184,9	166,7	6094,4
5	0,731	-25342,3	9030,9	-34541,0	163,6	6112,7

1.1.6.4 Perdas imediatas por seção

Seção	Pi (kN)	Po (kN)	Perdas (%)
0	6643,1	5944,0	10,5
1	6643,1	5993,3	9,8
2	6643,1	6023,7	9,3
3	6643,1	6069,1	8,6
4	6643,1	6094,4	8,3
5	6643,1	6112,7	8,0

1.1.7 Parâmetros utilizados para a estimativa das perdas progressivas

Dados de entrada	Etapa 02		Etapa 03		Etapa 04	
Dados de entrada	$\Delta \mathbf{t}$ ef	T (°C)	Δt ef	T (°C)	Δt ef	T (°C)
Temperatura média	10	20	30	20	45	20
fck (Mpa)	40		40		40	
Idade inicial	10		30		45	
ldade final	10000		10000		10000	
Tipo de cimento (α)	Fluência	Retração	Fluência	Retração	Fluência	Retração
προ de cimento (α)	3	1	3	1	3	1
Umidade relativa Uar (%)	70		70		70	
Slump (cm)	5,0		5,0		5,0	
Área seção transversal (cm²)	5850		5850		10470	
Perímetro contato ar (cm)	539,5		743,0		743,0	

1.1.7.1 Fluência

	Etapa 02	Etapa 03	Etapa 04
to - Idade fictícia, em dias	30,00	90,00	135,00
s	0,20	0,20	0,20
β1(t) - relação entre fckj/fck	0,874	1,007	1,043
β1(∞) - relação entre fckj/fck	1,007	1,043	1,221
φa - Coef. de fluência rápida	0,106	0,028	0,117
γ - Coef. Espessura fictícia	1,449	1,449	1,449
hfic (cm)	31,431	22,823	40,846
φ1c	2,000	2,000	2,000
φ2c	1,428	1,514	1,362
φf ₀₀	2,856	3,027	2,723
А	264,54	229,47	297,64
В	715,03	564,82	839,77
С	520,67	430,07	616,77
D	10122,03	8424,86	11558,90
βd(t)	0,615	0,565	0,995
$\beta f(t_0)$	0,359	0,531	0,524
βf(t)	0,501	0,588	0,970
φd∞ - valor = 0,4	0,4	0,4	0,4
φ(t,t0)	0,759	0,426	1,729

1.1.7.2 Retração

	Etapa 02	Etapa 03	Etapa 04
10⁴.ε 1s	-6,160	-6,160	-6,160
10 ⁴ .ε _{2s}	0,833	0,881	0,800
10⁴4.εcs∞	-5,131	-5,427	-4,929
Α	40,000	40,000	40,000
В	40,091	32,100	45,918
С	38,012	38,721	37,276
D	204,563	135,979	288,291
E	47,320	22,906	83,599
β s(t ₀)	0,065	0,197	0,131
βs(t)	0,140	0,246	1,000
10 ⁴ .εcs(t,t0)	-0,384	-0,264	-4,286

1.1.7.3 Relaxação da armadura

				Etapa 01	Etapa 02	Etapa 03
Seção	σрі	σpi/fptk	Ψ1000	Ψ(t,t0)	Ψ(t,t0)	Ψ(t,t0)
0	1255	0,660	2,020	1,81	1,73	5,05
1	1265	0,666	2,092	1,87	1,79	5,23
2	1271	0,669	2,128	1,91	1,83	5,32
3	1281	0,674	2,188	1,96	1,88	5,47
4	1286	0,677	2,224	1,99	1,91	5,56
5	1290	0,679	2,248	2,01	1,93	5,62

1.1.8 Perdas progressivas

Tensão nos cabos

Seção	Np (kN)	Mp (kN.m)	Mg1 (kN.m)	Mg2 (kN.m)	Mg3 (kN.m)	0,4xMq (kN.m)	σc,p0g (kN/m²)	αр
0	-10161	-18	0	0	0	0	-7729	5,65
1	-10245	-5896	2095	1687	650	1094	-6933	5,65
2	-10297	-13258	5592	4486	1467	2462	-4938	5,65
3	-10375	-17687	8469	6776	2113	3534	-2233	5,65
4	-10418	-19233	10088	8058	2484	4158	58	5,65
5	-10449	-19518	10576	8443	2600	4357	895	5,65

Perdas progressivas

	Etapa 01	Etapa 02	Etapa 03	Etapa 01	Etapa 02	Etapa 03	Etapa 01	Etapa 02	Etapa 03
Seção	σc,p0g (kN/m²)	σc,p0g (kN/m²)	σc,p0g (kN/m²)	χ(t,to)	χ(t,to)	χ(t,to)	χр	χр	χр
0	-10178	0	0	0,0183	0,0175	0,0518	1,0183	1,0175	1,0518
1	-14046	1687	1744	0,0189	0,0181	0,0537	1,0189	1,0181	1,0537
2	-17962	4486	3929	0,0192	0,0184	0,0547	1,0192	1,0184	1,0547
3	-19593	6776	5647	0,0198	0,0189	0,0563	1,0198	1,0189	1,0563
4	-19563	8058	6643	0,0201	0,0193	0,0572	1,0201	1,0193	1,0572
5	-19392	8443	6957	0,0203	0,0195	0,0578	1,0203	1,0195	1,0578

5

Etapa 01 Etapa 02 Etapa 03 Etapa 01 Etapa 02 Etapa 03 Seção η η η χс χс χс ρp 1,3797 1,2128 1,8643 1,38 0,00493 0 1,00 1,00 0,00493 1 1,3797 1,2128 1,8643 1,58 1,58 2,60 2 1,8643 0,00493 1,3797 1,2128 2,29 2,29 3,58 3 1,3797 1,2128 1,8643 2,70 2,70 4,11 0,00493 4 1,3797 1,2128 1,8643 2,85 2,85 4,29 0,00493

2,87

2,87

4,32

0,00493

1,8643

	Etapa 01	Etapa 02	Etapa 03	Final	
Seção	Δσ _P (kN/m²)	Δσ _P (kN/m²)	Δσ _P (kN/m²)	Δσ _p (kN/m²)	P∞ (kN)
0	-73009	-26152	-143571	-242733	4794,0
1	-90083	-22620	-125864	-238567	4863,1
2	-106809	-15888	-103403	-226101	4952,5
3	-114265	-10868	-87367	-212500	5062,4
4	-114489	-8140	-78378	-201007	5142,2
5	-114053	-7505	-76024	-197581	5176,7

1.1.8.1.1 Perdas por seção

1,3797

1,2128

Seção	Pi (kN)	Po (kN)	Perdas	Perdas totais
Seçau	I I (KIN)	FU (KIN)	progressivas (%)	(%)
0	5944,0	4794,0	19,3	29,9
1	5993,3	4863,1	18,9	28,6
2	6023,7	4952,5	17,8	27,1
3	6069,1	5062,4	16,6	25,2
4	6094,4	5142,2	15,6	23,9
5	6112,7	5176,7	15,3	23,3

1.1.9 Verificação do estado limite último de flexão (ELU)

$$M_{sdm\acute{a}x} = 14366,28 \text{ kN.m}$$
 d = 1,91 m 0,8x = 0,21 m < 0,23 m LN na laje $\epsilon_{sp} = 10$ %

- Determinação do pré-alongamento

$$\epsilon_{p0} = 4,92 \% o$$
 $\sigma_{cpn} = 8034 \text{ kN/m}^2$
 $\epsilon_{cpn} = -\epsilon_{pn} = 0,23 \% o$
 $\epsilon_{pi} = \epsilon_{p0} + \epsilon_{pn} = 5,14 \% o$
 $\epsilon_{p} = 15,14 \% o$
 $\sigma_{p} = 1507 \text{ MPa}$

- Momento resistente de cálculo

Número de cordoalhas n = 48Área de cada cordoalha = 0,987 cm²

$$MRd1 = n * Ap * \sigmap * (d - 0.5 * 0.8x) =$$

- Armadura passiva

Adicionando : 4 barras de 25,0 As = 20 cm^2 d1 = 1,91 m d2 = 1,98 m 0.8x = 0.23 m $\epsilon_{sp} = 10 \%$ $\epsilon_{pi} = \epsilon_{p0} + \epsilon_{pn} = 5,14 \%$ $\epsilon_{p} = 15,14 \%$ $\epsilon_{p} = 1507 \text{ MPa}$

Momento resistente de cálculo

$$M_{Rd2} = A_s * f_{yd} * (d_2 - 0.5 * 0.8x) = 1591,93 kN.m$$

MRd = MRd1 + MRd2

- Armadura longitudinal na mesa superior

Considerando o maior esforço de tração na seção 3, com linha neutra a 0,193 m do topo da seção, temos:

$$As = 8.8 \text{ cm}^2$$
 \rightarrow 5 barras de 16,0mm

1.1.10 Dimensionamento dos esforços cortantes

fck = 40 MPa fcd = 29 MPa fctm = 3,51 MPa fctd = 1,75 MPa

bw = 0,20 m ← Demais seções d = 1,91 m

bw = 0,20 m ← Seção 0

Verificação do concreto: Vsd < VRd2

Vsd = 1511,57 kN

VRd2 = 2143,72 kN > Vsd OK!

Parcela resistida pelo concreto (Modelo I) → Vc = 402,11 kN ← Demais seções Vc = 402,11 kN ← Seção 0

Seção	Psenα (kN)	Vsd (kN)	M₀ (kN.m)	β	β x Vc (kN)	Vsw (kN)	Asw (cm²/m)	Δσs (MPa)	α
0	354,79	1192,25	2334,59	1,0	402,11	991,20	13,26	62,65	1,00
1	359,90	924,69	4552,33	1,9	756,13	546,62	7,31	67,78	1,00
2	366,52	659,74	5802,65	1,6	656,01	331,73	4,44	79,19	1,00
3	374,65	398,25	6473,59	1,5	618,14	89,18	1,19	100,49	1,18
4	380,56	143,55	6746,39	1,5	598,94	0,00	0,00	146,55	1,72
5	383,11	-102,25	6817,58	1,5	592,93	0,00	0,00	145,00	1,71

$$\beta = 1 + \frac{M_0}{M_{sdm\acute{a}x}} \le 2$$

Fator de fadiga: $\alpha = \frac{\Delta \sigma_{\rm s}}{\Delta f_{\rm sd}}$ sendo, $\Delta f_{\rm sd} = 85$ MPa

Sooso	Asw $x \alpha$	Estribo	os
Seção	(cm²/m)	bitolas	ramos
0	13,26	8,0 c. 7	2
1	7,31	8,0 c. 13	2
2	4,44	8,0 c. 20	2
3	3,23	8,0 c. 20	2
4	3,23	8,0 c. 20	2
5	3,23	8,0 c. 20	2

$$A_{\text{swmin}} = \frac{0.2 \times b_{w} \times f_{\text{ctm}}}{f_{\text{ywk}}}$$

1.1.11 Dimensionamento da fretagem dos cabos na cabeça das longarinas

Fretagem segundo a NCHRP (National Cooperative Highway Research Program)

 $A = 30 \times 30 = 900 \text{ cm}^2$

 $Ab = 25 \times 25 = 600,25 \text{ cm}^2$

fck = 40 MPa

A bainha = $38,5 \text{ cm}^2$

Ab útil = 561.8 cm^2

Força de protensão = 1659,97 kN

 $\sigma_c = 29.5 \text{ MPa}$

Parcela 01, espraiamento da carga:

Fult = 2201 kN

Desconsiderando a parcela 02 (efeito da fretagem), temos:

F.S = 1.21

- Armaduras de fretagem na direção vertical:

$$Asv = 2.31 \text{ cm}^2 \rightarrow 7.70 \text{ cm}^2/\text{m}$$

- Armaduras de fretagem na direção horizontal:

$$A_{sv} = 2,31 \text{ cm}^2 \rightarrow 7,70 \text{ cm}^2/\text{m}$$

1.1.12 Dimensionamento para içamento das longarinas

Peso próprio da longarina = 15,62 x 37,20 + 1,30 x 0,80 x 2 x 25 = 633,06 kN

Peso suportado por um cabo = 317 kN

$$A_{\rm s} = \frac{1.4 \times 367}{43.5} = 11.81 cm^2 \rightarrow Adotado: 6\phi 16.0$$

1.1.13 Verificações das tensões em serviço (ELS)

	Esforços solicitantes										
Cooão	Mg1	Mg2	Mg3	Mq	P ₀ cosα	P∞	Simples	Comp.			
Seção	(kN.m)	(kN.m)	(kN.m)	(kN.m)	(kN)	cosα(kN	e _p (m)	e _p (m)			
0	0,00	0,00	0,00	0,00	5927,71	4780,89	0,026	0,443			
1	1011,90	814,80	352,80	1485,60	5976,85	4849,71	0,475	0,903			
2	1805,80	1448,60	627,30	2633,00	6007,17	4938,93	0,711	1,147			
3	2376,50	1901,30	823,30	3442,30	6052,50	5048,52	0,818	1,259			
4	2720,40	2172,90	940,90	3937,50	6077,73	5128,05	0,851	1,295			
5	2835,20	2263,50	980,10	4106,60	6095,99	5162,49	0,856	1,301			

	Tensões (kN/m²)											
Seção	Prot. Inicial (Pi)		σMg1		σMg2		σMg3					
	σi	σs	δi	σs	δi	σs	σi	σs				
0	-10704	-9495	0	0	0	0	0	0				
1	-20747	1527	3752	-4185	3021	-3370	912	-383				
2	-26100	7387	6696	-7468	5372	-5991	1621	-681				
3	-28700	10123	8813	-9828	7050	-7863	2128	-894				
4	-29569	11001	10088	-11250	8058	-8986	2432	-1021				
5	-29771	11160	10514	-11725	8394	-9361	2533	-1064				

Tensões (kN/m²)									
Sooso	σ	Mq	σре	rdas					
Seção	σi σs		δi	σs					
0	0	0	2506	641					
1	3839 -1613		3803	67					
2	6805	-2858	4277	-219					
3	8896	-3737	4310	-328					
4	10176 -4274		4166	-347					
5	10613	-4458	4110	-347					

- Combinações (Protensão limitada)

Ato da protensão: 1,1 x Pi + 0,9 x Mg1

Fim da construção: Pi + Mg1 + Mg2 + Mg3 + Perdas/2

Comb. Frequente: Pi + Mg1 + Mg2 + Mg3 + Perdas + ψ 1 x Mq Comb. Quase-perm.: Pi + Mg1 + Mg2 + Mg3 + Perdas + ψ 2 x Mq

	Verificações (kN/m²)											
Seção	Ato da protensão		Fim da construção		Comb. Frequente $(\psi_1 = 0.5)$		Comb. Quase- perm. (ψ 2 = 0,3)					
	σi	σs	σi σs		σi	Ωs	σi	σs				
0	-11775	-8546	-9451	-9175	-8199	-8854	-8199	-8854				
1	-19445	-2810	-11160	-11160 -6376		-7149	-8107	-6827				
2	-22683	1404	-10272	-6862	-4731	-8401	-6092	-7829				
3	-23639	2290	-8554	-8625	-1951	-10657	-3730	-9910				
4	-23447	1975	-6909 -10431		263	-12742	-1773	-11887				
5	-23285	1723	-6276	-11164	1086	-13567	-1037	-12675				

Limitações das tensões de acordo com NBR 6118/2014

Compressão				Traç		
σ c <u><</u>	$0.7 \times f_{ckj} =$	-24,5 MPa	σ t <u><</u>	$1,2 \times f_{ctkj} =$	2,7 MPa	(Ato protensão)
σ c <u><</u>	0.7 x fck =	-28,0 MPa	σ t <u><</u>	$1,2 \times f_{ctk} =$	2,9 MPa	(Em serviço)

1.1.14 Armaduras complementares

Pele: $\begin{cases} \text{Alma de 20cm: } \phi 8,0c.20 \\ \text{Alma de 65cm: } \phi 10,0c.16 \end{cases}$

1.2 Longarinas in loco

Cargas permanentes distribuídas

$$g_1 = 1,15 \times 25 = 28,75 \, kN / m$$

 $g_2 = 12,54kN/m$

 $g_3 = 5,43kN/m$

 $g_{total} = 46,72kN/m$

Cargas permanentes concentradas

 $G_1 = 67,15kN$ (Cortinas + alas)

 $G_2 = 62,50 kN$ (Placa de transição)

Cargas móveis

Q = 74,46kN

q = 13,53kN/m

1.2.1 Dimensionamento à flexão

$$M_g = 129,65 \times 4,85 + \frac{46,72 \times 4,85^2}{2} = 1178,29 \text{ kN.m}$$

$$M_q = 74,46 \times (4,85+3,35+1,85) + \frac{13,53 \times 4,85^2}{2} = 1128,72 \text{kN.m}$$

$$M_d = 1,35 \times 1178,29 + 1,50 \times 1128,72 = 3283,77 \, kN.m$$

$$k_c = \frac{65 \times 197^2}{328377} = 7,68$$
 $k_s = 0,0239$

$$A_{s} = \frac{0,0239 \times 328377}{197} = 39,84 cm^{2} \rightarrow 8\phi 25,0$$

1.2.2 Dimensionamento ao cortante

$$V_a = 129,65 + 46,72 \times 4,85 = 356kN$$

$$V_a = 3 \times 74,46 + 13,53 \times 4,85 = 289 kN$$

$$V_d = 1,35 \times 356 + 1,50 \times 289 = 914 kN$$

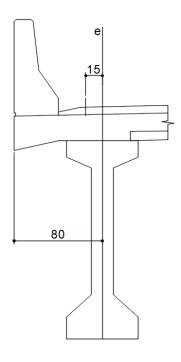
$$V_{Rd2} = 0.27 \times 0.88 \times 21429 \times 0.65 \times 1.97 = 6520 \text{ kN} > V_d \rightarrow OK$$

$$V_c = 0.6 \times 1448 \times 0.65 \times 1.97 = 1112 \text{ kN}$$

$$V_{sw} = 914 - 1112 = -198 \ kN$$

$$A_{\rm sw} = A_{\rm swmin} = 7.53 \ cm^2 / m \rightarrow \phi \ 8.0 \ c.13 \ (2 \ ramos)$$

$$A_{\text{spele}} = 0.10 \times 65 = 6.50 \text{ cm}^2 / \text{ m} > 5.00 \text{ cm}^2 / \text{ m} \rightarrow \phi 10.0c.16$$



81

1.3 Lajes

1.3.1 Lajes em balanço

Momentos para cargas permanentes

$$M_{xeq} = 6,10 \ kN.m/m$$

Momentos para impacto de 100 kN no topo da barreira

$$M_{\text{xeq}} = \frac{100 \times 0.87}{2 \times (0.87 + 0.40)} = 34,25 \text{ kN.m/m}$$

Momentos para cargas móveis

$$M_{xeq} = 1,35 \times 75 \times 0,10 = 10,13 \text{ kN.m/m}$$

Dimensionamento

$$f_{ck} = 30 MPa$$

$$M_{xed} = 1,35 \times 6,10 + 1,5 \times 34,25 = 59,61 \text{ kN.m/m} = 5961 \text{ kN.cm/m}$$

$$k_c = \frac{100 \times 20^2}{5961} = 6.71 \rightarrow A_s^- = 7.18 \text{ cm}^2 / m > A_{smin} = 3.45 \text{ cm}^2 / m$$

$$A_{\rm s}^- = 7.18 \ cm^2 \ / \ m \rightarrow \phi \ 10.0 \ c.11$$

Para as armaduras de distribuição, foram adotados: $A_{sdistr} = \phi$ 8,0 c.14

1.3.2 Laje central

Para o dimensionamento da laje central será utilizada a tabela de Rüsch nº 14 e 58, com placa engastada-apoiada.

$$I_{..} = 2.18 m$$

$$I_{x} / a = 1,09$$

$$t/a = 0.343$$

$$\phi = 1.35$$

$$I_{y} = 2,18 \ m$$
 $I_{y} / a = 1,09$ $t / a = 0,343$ $\phi = 1,35$ $g = 7,50 \ kN / m^{2}$

Momentos para cargas permanentes

$$M_{xmq} = 0.0625 \times 7.50 \times 2.18^2 = 2.23 \text{ kN.m/m}$$

$$M_{ymq} = 0.0104 \times 7.50 \times 2.18^2 = 0.37 \text{ kN.m/m}$$

$$-M_{xeq} = 0.125 \times 7.50 \times 2.18^2 = 4.46 \text{ kN.m/m}$$

$$-M_{yeq} = 0.125 \times 7.50 \times 2.18^2 = 4.46 \text{ kN.m/m}$$

Momentos para cargas móveis

$$M_{xma} = 1,35 \times (75 \times 0,195 + 5 \times 0,02) = 19,88 \text{ kN.m/m}$$

$$M_{vma} = 1,35 \times (75 \times 0,101 + 5 \times 0,01) = 10,29 \text{ kN.m/m}$$

$$-M_{xea} = 1,35 \times (75 \times 0,328 + 5 \times 0,25) = 34,90 \text{ kN.m/m}$$

$$-M_{veg} = 1,35 \times (75 \times 0,365 + 5 \times 0,13) \times 0,95 = 35,94 \text{ kN.m/m}$$

Momentos gerados pela distribuição transversal das cargas móveis

$$M_{xmq} = 1,35 \times 75 \times 0,452 / 1,5 = 30,51 \text{ kN.m/m} \rightarrow M_{xmq} = 30,51 \text{ kN.m/m}$$

$$-M_{\rm xeq} = 1,35 \times 75 \times 0,276 \, / \, 1,5 = 18,63 \, \, kN.m / \, m \rightarrow -M_{\rm xeq} = 34,90 \, \, \, kN.m / \, m$$

Dimensionamento

$$f_{ck} = 30 \, MPa$$

$$M_{xmd} = 1,35 \times 2,23 + 1,5 \times 30,51 = 48,78 \text{ kN.m/m} = 4878 \text{ kN.cm/m}$$

$$k_c = \frac{100 \times 20^2}{4878} = 8,20 \rightarrow A_s = 5,78 \text{ cm}^2 / m > A_{smin} = 3,45 \text{ cm}^2 / m$$

Fadiga:
$$A_s = 6.95 \text{ cm}^2 / \text{m} \rightarrow \Delta \sigma_s = 188.83 \text{ MPa} \rightarrow \phi 10.0 \text{ c.}11$$

$$M_{ymd} = 1,35 \times 0,37 + 1,5 \times 10,29 = 15,94 \text{ kN.m/m} = 1594 \text{ kN.cm/m}$$

$$k_c = \frac{100 \times 13^2}{1594} = 10,61 \rightarrow A_s = 2,90 \text{ cm}^2 / m < A_{smin} = 3,45 \text{ cm}^2 / m$$

Fadiga:
$$A_s = 3,60 \ cm^2 \ / \ m \rightarrow \Delta \sigma_s = 187,80 \ MPa \rightarrow \phi \ 8,0 \ c.14$$

$$-M_{xed} = 1,35 \times 4,46 + 1,5 \times 34,90 = 58,37 \ kN.m \ / \ m = 5837 \ kN.cm \ / \ m$$

$$k_c = \frac{100 \times 20^2}{5837} = 6,85 \rightarrow A_s = 7,03 \ cm^2 \ / \ m > A_{smin} = 3,45 \ cm^2 \ / \ m$$
Fadiga: $A_s = 8,00 \ cm^2 \ / \ m \rightarrow \Delta \sigma_s = 188,56 \ MPa \rightarrow \phi \ 10,0c.10$

$$-M_{yed} = 1,35 \times 4,46 + 1,5 \times 34,90 = 58,37 \ kN.m \ / \ m = 5837 \ kN.cm \ / \ m$$

$$k_c = \frac{100 \times 19^2}{5837} = 6{,}10 \rightarrow A_s = 7{,}48 \text{ cm}^2 \text{ / } m > A_{smin} = 3{,}45 \text{ cm}^2 \text{ / } m$$

Fadiga:
$$A_s = 8,50 \text{ cm}^2 / \text{m} \rightarrow \Delta \sigma_s = 188,85 \text{ MPa} \rightarrow \phi 12,5 \text{ c.}14$$

Para as armaduras de distribuição, foram adotados: $A_{sdistr} = \phi 8,0 c.14$

1.4 Transversinas de apoio

Cargas permanentes

$$g_1 = 0.47 \times 25 = 11.75 \, kN / m$$
 (Peso próprio)

 $g_2 = 12,54kN/m$ (Reação laje do tabuleiro)

$$M_{g_{+}} = 5,50 kN.m$$
 $M_{g_{-}} = 10,10 kN.m$ $V_{g} = 27,50 kN$

Cargas móveis

$$Q = \frac{1,35 \times 450}{2} = 303,75 \text{kN (Por roda)}$$

$$M_{q_{+}} = 135,50 \text{kN.m}$$
 $M_{g_{-}} = 118,60 \text{kN.m}$ $V_{g} = 335,60 \text{kN}$

1.4.1 Dimensionamento à flexão

$$M_d^- = 1,35 \times 10,10 + 1,5 \times 118,60 = 191,54 \text{ kN.m} = 19154 \text{ kN.cm}$$

$$k_c = \frac{25 \times 179^2}{19154} = 41,82 \rightarrow A_s^- = 2,48 \text{ cm}^2 < A_{smin} = 6,94 \text{ cm}^2 \rightarrow 4\phi 16,0$$

$$M_d^+ = 1,35 \times 5,50 + 1,5 \times 135,50 = 210,68 \text{ kN.m} = 21068 \text{ kN.cm}$$

$$k_c = \frac{25 \times 179^2}{21068} = 38,02 \rightarrow A_s^+ = 2,73 \text{ cm}^2 < A_{smin} = 6,94 \text{ cm}^2 \rightarrow 4\phi \, 16,0$$

1.4.2 Dimensionamento ao cortante

$$V_d = 1,35 \times 27,5 + 1,5 \times 335,6 = 541 \, kN$$

$$V_{Rd2} = 0,27 \times 0,88 \times 21429 \times 0,25 \times 1,79 = 2278 \text{ kN} > V_d \rightarrow OK$$

$$V_c = 0.6 \times 1448 \times 0.25 \times 1.79 = 389 \text{ kN}$$

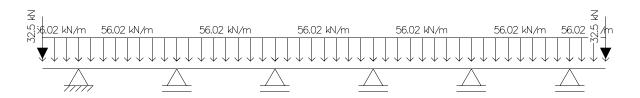
$$V_{sw} = 541 - 389 = 152 \, kN$$

$$A_{\text{sw}} = \frac{0.152}{0.9 \times 435 \times 1.79} = 0.000217 \ \text{m}^2 / \ \text{m} = 2.17 \ \text{cm}^2 / \ \text{m} < A_{\text{sw min}} = 2.90 \ \text{cm}^2 / \ \text{m} \rightarrow \phi \ 6.3c.20 \ (2 \ \text{ramos})$$

$$A_{\text{spele}} = 0.10 \times 25 = 2.50 \text{ cm}^2 / \text{ m} \rightarrow \phi 8.0 \text{ c.} 20$$

1.5 Cortinas

Cargas permanentes

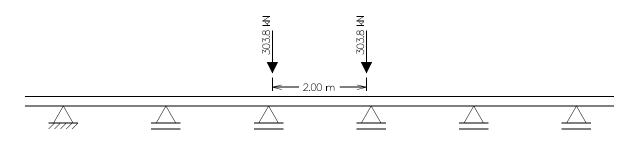

 $g_1 = 19,75kN/m$ (Peso próprio)

 $g_2 = 6,27kN/m$ (Reação das lajes)

 $g_3 = 30,00 kN / m$ (Placa de transição)

 $g_{total} = 56,02kN/m$

 $G_1 = 32,50 kN \text{ (Alas)}$


$$M_{g+} = 13,50$$
 KIV.///

$$M_{a+} = 13,50 \text{kN.m}$$
 $M_{a-} = 16,50 \text{kN.m}$ $V_a = 57,90 \text{kN}$

$$V_{a} = 57,90 kN$$

· Cargas móveis

$$Q = \frac{1,35 \times 450}{2} = 303,75kN \text{ (Por roda)}$$

$$M_{q+} = 135,50 \text{kN.m}$$
 $M_{q-} = 118,70 \text{kN.m}$ $V_q = 321,60 \text{kN}$

$$M_{a-} = 118,70 kN.m$$

$$V_{g} = 321,60 kN$$

1.5.1 Dimensionamento à flexão

$$M_d^- = 1,35 \times 16,50 + 1,5 \times 118,70 = 200,32 \text{ kN.m} = 20032 \text{ kN.cm}$$

$$k_c = \frac{30 \times 198^2}{20032} = 58,71 \rightarrow A_s^- = 2,35 \text{ cm}^2 < A_{smin} = 9,14 \text{ cm}^2 \rightarrow 2\phi 25,0$$

$$M_d^+ = 1,35 \times 13,50 + 1,5 \times 135,50 = 221,48 \text{ kN.m} = 22148 \text{ kN.cm}$$

$$k_c = \frac{30 \times 198^2}{22148} = 53,10 \rightarrow A_s^+ = 2,60 \text{ cm}^2 < A_{smin} = 9,14 \text{ cm}^2 \rightarrow 2\phi 25,0$$

1.5.2 Dimensionamento ao cortante

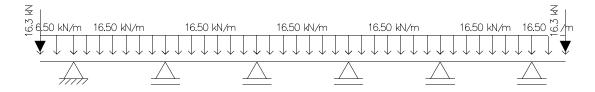
$$V_d = 1,35 \times 57,90 + 1,5 \times 321,60 = 561 \, kN$$

$$V_{Rd2} = 0.27 \times 0.88 \times 21429 \times 0.30 \times 1.98 = 3024 \text{ kN} > V_d \rightarrow OK$$

$$V_c = 0.6 \times 1448 \times 0.30 \times 1.98 = 516 \text{ kN}$$

$$V_{sw} = 561 - 516 = 45 \ kN$$

$$A_{\text{sw}} = \frac{0,045}{0.9 \times 435 \times 1.98} = 0,000058 \ m^2 / \ m = 0,58 \ cm^2 / \ m < A_{\text{sw min}} = 3,48 \ cm^2 / \ m \rightarrow \phi \ 6,3c.18 \ (2 \ ramos)$$


$$A_{\text{spele}} = 0.10 \times 30 = 3.00 \text{ cm}^2 / \text{ m} \rightarrow \phi 8.0 \text{c.} 16$$

1.6 Viga da cortina

Carregamentos e esforços

 $g_1 = 16,50 \, kN \, / \, m$ (Reação da cortina solicitada por cargas horizontais)

 $G_1 = 16,30kN$ (Reação da ala solicitada por cargas verticais)

$$M_{\rm m} = 4.60 kN.m$$

$$M_{g+} = 4,60 \text{kN.m}$$
 $M_{g-} = 18,30 \text{kN.m}$ $V_g = 29,50 \text{kN}$

$$V_{\rm a} = 29.50 kN$$

1.6.1 Dimensionamento à flexão

$$M_d^- = 1,35 \times 18,30 = 24,71 \text{ kN.m} = 2471 \text{ kN.cm}$$

$$k_c = \frac{30 \times 54^2}{2471} = 35,40 \rightarrow A_s^- = 1,06 \text{ cm}^2 < A_{smin} = 2,70 \text{ cm}^2 \rightarrow 2\phi 16,0$$

$$M_d^+ = 1,35 \times 4,60 = 6,21 \text{ kN.m} = 621 \text{ kN.cm}$$

$$k_c = \frac{30 \times 54^2}{621} = 140,87 \rightarrow A_s^+ = 0,27 \text{ cm}^2 < A_{smin} = 2,70 \text{ cm}^2 \rightarrow 2\phi 16,0$$

1.6.2 Dimensionamento ao cortante

$$V_d = 1,35 \times 29,50 = 40 \text{ kN}$$

$$V_{Rd2} = 0.27 \times 0.88 \times 21429 \times 0.30 \times 0.54 = 825 \text{ kN} > V_d \rightarrow OK$$

$$V_c = 0.6 \times 1448 \times 0.30 \times 0.54 = 141 \, kN$$

$$V_{\rm ow} = 40 - 141 = -101 \, kN$$

$$A_{sw} = A_{swmin} = 3,48 \text{ cm}^2/\text{ m} \rightarrow \phi 6,3c.15 (2 \text{ ramos})$$

1.7 Alas

Cargas verticais

 $G_1 = 32,50kN$ (Peso próprio)

Dimensionamento

$$M_d = 1,35 \times 32,50 \times 1,02 = 44,75 \text{ kN.m} = 4475 \text{ kN.cm}$$

$$k_c = \frac{40 \times 197^2}{4475} = 346,90 \rightarrow A_s = 0,53 \text{ cm}^2 < A_{smin} = 12,18 \text{ cm}^2 \rightarrow 4\phi 20,0$$

Cargas horizontais

Pressão do solo: 12,06 kN/m²

Pressão da sobrecarga: 8,25 kN/m²

Pressão média: 14,28 kN/m²

Dimensionamento

$$M_d = \frac{1,35 \times 14,28 \times 3,25 \times 1,02}{2,03} = 31,48 \text{ kN.m} = 3148 \text{ kN.cm}$$

$$k_c = \frac{100 \times 34^2}{3148} = 36,72 \rightarrow A_s = 2,15 \text{ cm}^2 / m < A_{smin} = 6,00 \text{ cm}^2 / m \rightarrow \phi 10,0c.13$$

Armadura na face externa: $A_{\rm smin} = 6,00~{\rm cm^2} \ / \ m \rightarrow \phi \ 10,0c.13$

Estribos verticais: $A_{\text{swmin}} = 4,64 \text{ cm}^2 / m \rightarrow \phi 8,0 \text{ c.} 20 \text{ (2 } ramos)$

2 INFRA E MESOESTRUTURA

2.1 Cargas verticais da superestrutura

 $R_g = 1023,80 \text{ kN/longarina}$

Rq = 326,90 kN/longarina

Rq = 243,20 kN/longarina

2.2 Cargas verticais da mesoestrutura

Travessas P1=P2 = 45 kN/m

2.3 Aparelho de apoio

Apoio P1=P2

Os aparelhos de apoio utilizados terão 300x500x48mm, sendo 3 camadas de elastômero com 10 mm e 4 chapas de aço com 3 mm.

$$\sigma_{m\acute{a}x} = \frac{1,594}{0.30 \times 0.50} = 10,63 MPa \rightarrow OK$$

$$k_a = \frac{1000 \times 0,30 \times 0,50}{3 \times 0,010} = 5000 \ kN / m$$
 por aparelho de apoio

2.4 Rigidez longitudinal e transversal

Conjunto apoio + aparelho de apoio

P1=P2:
$$\frac{1}{k_{L/T}} = \frac{1}{\infty} + \frac{1}{6 \times 5000} \rightarrow k_{L/T} = 30000 \ kN/m$$

2.5 Forças horizontais longitudinais

• Frenagem e aceleração: $F = 0.05 \times 5 \times 47.70 \times 10.00 = 119.25 \, kN < 135.00 \, kN$

P1=P2:
$$H_L = 135,00 \times 0,50 = 67,50 \text{ kN/apoio}$$

Temperatura e retração: ΔT = 36°C (PDN = 19,00m à direita do apoio P1)

P1=P2:
$$H_L = 30000 \times 36 \times 10^{-5} \times 19,00 = 205,20 \text{ kN/apoio}$$

Empuxo unilateral de solo sobre uma cortina: Ea = 13,36 x 11,70 = 156,32 kN

P1=P2:
$$H_L = 156,32 \times 0,50 = 78,16 \text{ kN/apoio}$$

Somatório de forças horizontais longitudinais

P1=P2:
$$H_1 = 67,50 + 205,20 + 78,16 = 350,86 \text{ kN / apoio}$$

2.6 Forças horizontais transversais

• Vento:
$$H_{W} = 47,70 \times 4,90 \times 1,00 = 233,72 \text{ kN}$$

P1=P2:
$$H_V = 233,72 \times 0,50 = 116,86 \text{ kN/} \text{ apoio}$$

2.7 Cálculo da fretagem

$$b_0 = 45 \text{ cm};$$

$$b = 120 \text{ cm};$$

$$N_d = 1594 \times 1,40 = 2232 \text{ kN}$$

$$F_{td} = 0.3 \times 2.232 \times \left(\frac{1.20 - 0.45}{1.20}\right) = 0.418MN$$

$$A_s = \frac{0.418}{435} = 0.000961m^2 \rightarrow 9.61cm^2 \rightarrow Adotado: 12.00cm^2 \rightarrow OK$$

2.8 Dimensionamento da sapata corrida

• Cargas permanentes:

Superestrutura = $1023,80 \times 6 / 12,15 = 506,00 \text{ kN/m}$

Meso e infraestrutura = 45,00 + 75,00 = 120,00 kN/m

Cargas móveis:

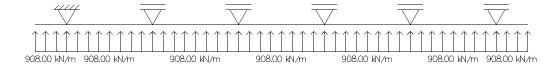
Superestrutura = $570,10 \times 6 / 12,15 = 282,00 \text{ kN/m}$

- Esforços longitudinais: 350,86 / 12,15 = 28,88 kN/m
- Momento longitudinal: 28,88 x 2,50 = 72,20 kN.m/m
- Cálculo da armadura de flexão

Para tal, será utilizado o método das bielas.

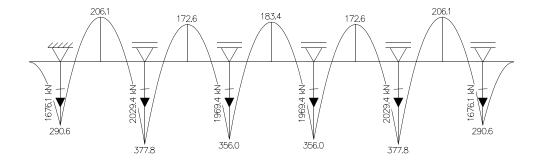
h = 100 cm;

d = 94 cm:


 $N_d = 1,35 \times (506,00 + 120,00) + 1,50 \times 282,00 = 1268,10 \text{ kN/m}$

$$T_d = \frac{N}{8} \times \left(\frac{A - a_p}{d}\right) = \frac{1268,10}{8} \times \left(\frac{300 - 120}{94}\right) = 303,53 \text{kN/m}$$

$$A_{s} = \frac{303,53}{43,5} = 6,98cm^{2} / m < A_{s,min} = 15,00cm^{2} / m \rightarrow Adotado: \phi16,0c13$$


$$A_{s,dist} = 0.20 \times 15,00 = 3.00 cm^2 / m \rightarrow Adotado: \phi 8.0c16$$

Cálculo da armadura de distribuição, considerando a sapata como viga

$$M_d = 1,40 \times 377,80 = 528,92 \text{ kN.m} = 52892 \text{ kN.cm}$$

$$k_c = \frac{120 \times 244^2}{37780} = 189,10 \rightarrow A_s = 0,23 \text{ cm}^2 < A_{s,dist} = 3,00 \text{ cm}^2 \rightarrow \phi 8,0c16$$

• Armadura mínima adotada para a viga travessa

$$A_{\text{s.min}} = 0.0015 \times 120 \times 150 = 45,00 \text{ cm}^2 \rightarrow Adotado = 14 \phi 20,0$$

$$A_{\text{sw,min}} = 13,91$$
cm² / m \rightarrow Adotado = ϕ 10,0c11

Cálculo da tensão máxima

$$\sigma_{m\acute{a}x} = \frac{908,00}{3,00 \times 1,00} \times \left(1 + \left(\frac{6 \times \frac{72,20}{908,00}}{3,00}\right)\right) = 0,351 MPa$$

91

E – MEMÓRIA DE CÁLCULO ESTRUTURAL DO VIADUTO DE PALMEIRINHA

1 SUPERESTRUTURA

1.1 Longarinas

Para o dimensionamento, as longarinas foram consideradas isostáticas. Serão moldadas no local, em concreto protendido, com protensão executada *in loco*. Posteriormente serão unificadas às lajes, de modo a criar uma seção composta em concreto armado e protendido, com o intuito de resistir aos esforços solicitantes.

As características das seções, verificações de tensões e dimensionamentos apresentados ao longo da memória foram obtidos através de planilhas em Excel, programadas pelo autor desta memória.

Serão apresentados todos os procedimentos necessários para o dimensionamento das longarinas protendidas, incluindo o levantamento de ações que solicitam a estrutura, as características da seção, verificações das tensões em serviço e estado limite último.

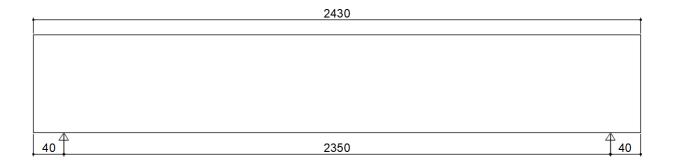


Figura 16 - Esquema estrutural

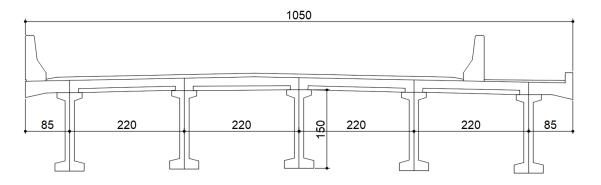
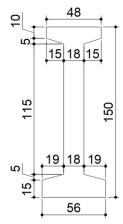



Figura 17 - Seção transversal da obra

93

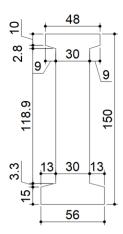


Figura 18 - Seção das longarinas nos vãos e apoios respectivamente

Posteriormente ela será unificada às lajes de modo a criar uma seção composta em concreto armado e protendido com o intuito de resistir os esforços solicitantes.

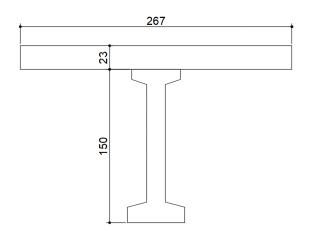


Figura 19 - Seção composta (Laje+longarina)

As características geométricas foram calculadas através de planilhas em Excel, diferenciando as seções isoladas e compostas.

Características	Viga isolada	Viga composta
Ac (m²)	0,374	0,762
I (m4)	0,097	0,258
ys (m)	0,799	0,333
yi (m)	0,701	1,167
ylaje (m)	-	0,563
Ws (m³)	0,121	0,773
Wi (m³)	0,138	0,221
Wlaje (m³)	-	0,457

Figura 20 - Características geométricas

As tensões nas seções foram calculadas considerando as perdas de protensão, imediatas e progressivas nas armaduras ativas, obedecendo as solicitações normativas exigidas pela NBR 6118/2014.

As perdas de protensão foram estimadas supondo os seguintes parâmetros:

- Idade mínima para protensão = 10 dias;
- Abatimento do concreto (Slump) = 0-4;
- Umidade do ambiente = 70%;
- Temperatura média de cura = 20°C;
- Tipo de cimento = CPV-ARI.

1.1.1 Cargas permanentes por longarina

- Fase 1:

Peso próprio da longarina na alma: g1 = 0,374 x 25 = 9,35 kN/m

Carga concentrada nos apoios: G1 = 9,80 kN

- Fase 2:

Peso próprio da laje: $g_2 = (10,50 \times 0,23 \times 25) / 5 = 12,08 \text{ kN/m}$

Transv. de apoio: $G_2 = (1,30 \times (9,53 - 5 \times 0,30)) \times 0,25 \times 25 / 5 = 13,05 \text{ kN}$

- Fase 3:

Pavimentação pista de rolamento: 0,17 x 8,00 x 24 = 32,64 kN/m

Sobrecapa passeio: $0.04 \times 1.55 \times 25 = 1.55 \text{ kN/m}$

Barreiras New-jersey: $5,75 \times 2 = 11,50 \text{ kN/m}$

Guarda-corpo: 2,00 kN/m

Total: $g_3 = 32,64 + 1,55 + 11,50 + 2,00 = 47,69 / 5 = 9,54 \text{ kN/m}$

1.1.2 Cargas móveis por longarina segundo NBR 7188/2013

Para a obtenção das cargas móveis foi utilizado o trem-tipo 45 da referida norma, considerando este, homogeneizado. A repartição transversal das cargas móveis fica a cargo da laje. As rigidezes das longarinas no meio do vão equivalem a k = 28727 kN/m.

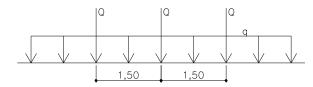

Foram considerados coeficientes de repartição transversal com a utilização do programa computacional "Ftool". A partir desses, foram plotadas as linhas de influência e carregadas suas áreas positivas de modo a extrair o trem-tipo de cálculo para a longarina mais solicitada.

Figura 21 - Coeficientes de repartição transversal

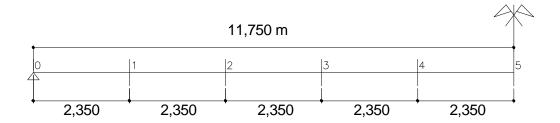
- Coeficiente de impacto adicional (φ)

$$\phi = 1 + 1,06 \times \left(\frac{20}{L + 50}\right) = 1 + 1,06 \times \left(\frac{20}{23,50 + 50}\right) = 1,288$$

- Trem-tipo de cálculo

No meio do vão: $Q = 1,288 \times 60 \times (0,888 + 0,219) = 85,55 \text{ kN}$

$$q = 1,288 \times 5 \times 1,77 = 11,40 \text{ kN/m}$$


Junto aos apoios: $Q = 60 \times 1,288 = 77,28 \text{ kN}$

$$q = 5 \times 1,288 \times 2,20 = 14,17 \text{ kN/m}$$

1.1.3 Cálculo dos esforços solicitantes

Esforços devido às cargas permanentes

Seções	M _{g1} (kN.m)	Mg2 (kN.m)	Mg3 (kN.m)	MΣg (kN.m)	Vg1 (kN)	Vg2 (kN)	Vg3 (kN)	VΣg (kN)
0	0,00	0,00	0,00	0,00	109,90	141,90	112,10	363,90
1	232,40	300,20	237,10	769,70	87,90	113,60	89,70	291,20
2	413,10	533,70	421,50	1368,30	65,90	85,20	67,30	218,40
3	542,20	700,50	553,20	1795,90	43,90	56,80	44,80	145,50
4	619,60	800,50	632,20	2052,30	22,00	28,40	22,40	72,80
5	645,40	833,90	658,60	2137,90	0,00	0,00	0,00	0,00

Esforços devido às móveis

Seções	Mq (kN.m)	Vq+ (kN)	V _q - (kN)
0	0,00	374,30	0,00
1	787,80	323,20	-13,00
2	1392,00	274,70	-40,30
3	1812,50	229,00	-72,70
4	2075,10	185,90	-107,70
5	2166,90	145,50	-145,50

Esforços de cálculo

Seções	Mg	Mq	Md	Vg (kN)	Vq (kN)	Vd (kN)
Coyoo	(kN.m)	(kN.m)	(kN.m)	19 (1111)	. 4 ()	1 % (1 % 1)
0	0,00	0,00	0,00	363,90	374,30	1052,72
1	769,70	787,80	2220,80	291,20	323,20	877,92
2	1368,30	1392,00	3935,21	218,40	274,70	706,89
3	1795,90	1812,50	5143,22	145,50	229,00	539,93
4	2052,30	2075,10	5883,26	72,80	185,90	377,13
5	2137,90	2166,90	6136,52	0,00	145,50	218,25

 $S_d = 1,35 \times S_g + 1,50 \times S_q$

1.1.4 Traçado dos cabos

Foram adotados 3 cabos compostos de 8 \(\phi \) 12,7 CP-190 RB, com ancoragens ativas em ambas as extremidades. As bainhas serão metálicas com diâmetro nominal de 55mm. A escolha da quantidade de cabos e cordoalhas foi feita a partir da análise dos esforços solicitantes e das tensões por eles geradas, de modo a não ultrapassar os limites estabelecidos pela NBR 6118/2014.

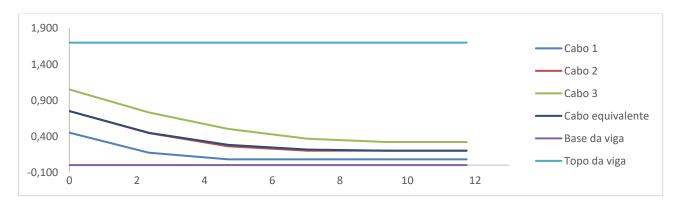


Figura 22 - Elevação dos cabos

	Posicionamento dos cabos (m)											
$\mid \times \mid$	S	0	S	1	S	32	S	3	S	64	S	5
	Х	У	Х	у	Х	У	Х	У	Х	У	Х	у
Cabo 1	0,000	0,450	2,350	0,173	4,700	0,080	7,050	0,080	9,400	0,080	11,750	0,080
Cabo 2	0,000	0,750	2,350	0,444	4,700	0,261	7,050	0,200	9,400	0,200	11,750	0,200
Cabo 3	0,000	1,050	2,350	0,731	4,700	0,503	7,050	0,366	9,400	0,320	11,750	0,320
Cabo eq.	0,000	0,750	2,350	0,449	4,700	0,281	7,050	0,215	9,400	0,200	11,750	0,200

1.1.5 Determinação da tensão inicial

Segundo a NBR 6118/2014, os limites de tensão para as cordoalhas são:

$$\sigma_{pi} \le \begin{cases} 0.74 \times f_{ptk} = 1406 \text{ MPa} \\ 0.82 \times f_{pyk} = 1402 \text{ MPa} \end{cases}$$

Será adotado: $\sigma_{pi} = 1402 MPa$

Adotando cabos com 8 cordoalhas de 12,7 CP-190RB, temos:

$$A_{\rm p} = 0.987 \times 8 = 7.90 \ cm^2 / m$$

$$P_i = 140,2 \times 7,90 = 1107,58 \text{ kN/ cabo} \rightarrow \text{p/ 3 cabos} = 3321,5 \text{ kN}$$

1.1.6 Perdas imediatas

1.1.6.1 Perdas por atrito

$$P_0 = P_i \times (1 - (\mu \times \Sigma \alpha + \beta \times \mathbf{x}))$$

Pi = 3321,5 $\mu = 0,25$

 $\beta = 0.0025$

Comprimento parabólico do cabo a partir da seção 0: a =

9,4 m

Seção	Trecho x (m)	a-x (m)	α (rad)	Σα	Po (kN)
0	0	9,400	0,116	0,000	3321,5
1	2,35	7,050	0,071	0,046	3278,8
2	4,700	4,700	0,035	0,082	3244,6
3	7,05	2,350	0,004	0,112	3215,5
4	9,400	0,000	0,000	0,116	3207,3
5	11,75	0,000	0,000	0,116	3202,6

Alongamento previsto durante a protensão (ΔL) = 8,04cm para cada lado Alongamento total do cabo = 16,08cm

1.1.6.2 Perdas por acomodação da ancoragem

 $\delta = 6 \, \text{mm}$

 $Ap = 23,69 \text{ cm}^2$

 $\sigma_{pi} = 1402 \text{ MPa}$

Trecho	Área (m²)
0-1	50,21
1-2	120,461
2-3	171,27
3-4	67,2847
4-5	49,7792
Σ	459,00

Seção	Po (kN)
0	2919,9
1	2962,6
2	2996,8
3	3025,9
4	3034,1
5	3038,8

2842,56 m²

 $\Delta Pm =$ 163,79

1.1.6.3 Perdas por encurtamento elástico

 $Ac = 0.374 \text{ m}^2$ I = 0.097 m4 Ep/Ec = 5.647 n = 3 cabos

Seção	e _p (m)	σερ (kN/m²)	σεg (kN/m²)	Δσ _P (kN/m²)	ΔP (kN)	Po (kN)
0	-0,049	-7879,1	0,0	-14830,8	35,1	2884,7
1	0,252	-9864,8	605,1	-17429,8	41,3	2921,3
2	0,420	-13473,8	1792,6	-21987,6	52,1	2944,7
3	0,486	-15474,1	2722,5	-24002,4	56,9	2969,1
4	0,501	-15986,6	3208,5	-24052,3	57,0	2977,1
5	0,501	-16011,4	3342,1	-23847,5	56,5	2982,3

1.1.6.4 Perdas imediatas por seção

Seção	Pi (kN)	Po (kN)	Perdas (%)
0	3321,5	2884,7	13,2
1	3321,5	2921,3	12,0
2	3321,5	2944,7	11,3
3	3321,5	2969,1	10,6
4	3321,5	2977,1	10,4
5	3321,5	2982,3	10,2

1.1.7 Parâmetros utilizados para a estimativa das perdas progressivas

Dados de entrada	Etap	Etapa 02		oa 03	Etapa 04	
Dados de entrada	$\Delta \mathbf{t}$ ef	T (°C)	Δt ef	T (°C)	Δt ef	T (°C)
Temperatura média	10	20	30	20	45	20
fck (Mpa)	4	.0	40		4	0
Idade inicial	10		30		45	
ldade final	100	000	10000		10000	
Tipo de cimento (α)	Fluência	Retração	Fluência	Retração	Fluência	Retração
προ de cimento (α)	3	1	3	1	3	1
Umidade relativa Uar (%)	7	0	70		70	
Slump (cm)	5,0		5,0		5,0	
Área seção transversal (cm²)	3740		3740		8415	
Perímetro contato ar (cm)	45	4,9	694,9		694,9	

1.1.7.1 Fluência

	Etapa 02	Etapa 03	Etapa 04
to - Idade fictícia, em dias	30,00	90,00	135,00
s	0,20	0,20	0,20
β1(t) - relação entre fckj/fck	0,874	1,007	1,043
β1(∞) - relação entre fckj/fck	1,007	1,043	1,221
φa - Coef. de fluência rápida	0,106	0,028	0,117
γ - Coef. Espessura fictícia	1,449	1,449	1,449
hfic (cm)	23,832	15,601	35,102
φ1c	2,000	2,000	2,000
φ2c	1,502	1,618	1,399
φf ₀₀	3,004	3,236	2,799
Α	233,82	196,37	278,09
В	584,32	409,97	768,37
С	440,80	352,61	558,56
D	8643,72	6696,78	10732,33
βd(t)	0,615	0,565	0,995
$\beta f(t_0)$	0,373	0,563	0,542
$\beta f(t)$	0,527	0,622	0,973
φd∞ - valor = 0,4	0,4	0,4	0,4
φ(t,t0)	0,813	0,447	1,723

1.1.7.2 Retração

	Etapa 02	Etapa 03	Etapa 04
10 ⁴ .ε1s	-6,160	-6,160	-6,160
10 ⁴ .ε ₂ s	0,874	0,950	0,818
10⁴4.εcs∞	-5,384	-5,850	-5,042
Α	40,000	40,000	40,000
В	33,183	23,099	42,695
С	38,637	39,337	37,719
D	143,614	84,533	236,141
E	25,320	9,163	60,307
β s(t ₀)	0,093	0,277	0,157
βs(t)	0,189	0,336	1,000
10 ⁴ .εcs(t,t0)	-0,517	-0,346	-4,249

1.1.7.3 Relaxação da armadura

				Etapa 01	Etapa 02	Etapa 03
Seção	σрі	σpi/fptk	Ψ1000	Ψ(t,t0)	Ψ(t,t0)	Ψ (t,t0)
0	1220	0,642	1,804	1,62	1,55	4,51
1	1236	0,650	1,900	1,70	1,63	4,75
2	1246	0,656	1,972	1,77	1,69	4,93
3	1257	0,662	2,044	1,83	1,75	5,11
4	1261	0,663	2,056	1,84	1,76	5,14
5	1263	0,665	2,080	1,86	1,78	5,2

1.1.8 Perdas progressivas

Tensão nos cabos

Seção	Np (kN)	Mp (kN.m)	Mg1 (kN.m)	Mg2 (kN.m)	Mg3 (kN.m)	0,4xMq (kN.m)	σc,p0g (kN/m²)	αр
0	-7713	-71	0	0	0	0	-6331	5,65
1	-7811	-1916	605	782	660	878	-4419	5,65
2	-7873	-5366	1793	2316	1449	1914	-2480	5,65
3	-7939	-7245	2723	3517	2043	2678	-427	5,65
4	-7960	-7726	3209	4145	2372	3115	1160	5,65
5	-7974	-7740	3342	4318	2472	3253	1732	5,65

Perdas progressivas

	Etapa 01	Etapa 02	Etapa 03	Etapa 01	Etapa 02	Etapa 03	Etapa 01	Etapa 02	Etapa 03
Seção	σc,p0g (kN/m²)	σc,p0g (kN/m²)	σc,p0g (kN/m²)	χ(t,to)	χ(t,to)	χ(t,to)	χр	χр	χр
0	-7784	0	0	0,0163	0,0156	0,0461	1,0163	1,0156	1,0461
1	-9122	782	1538	0,0172	0,0164	0,0487	1,0172	1,0164	1,0487
2	-11447	2316	3363	0,0178	0,0171	0,0506	1,0178	1,0171	1,0506
3	-12461	3517	4721	0,0185	0,0177	0,0525	1,0185	1,0177	1,0525
4	-12478	4145	5487	0,0186	0,0178	0,0528	1,0186	1,0178	1,0528
5	-12372	4318	5724	0,0188	0,0180	0,0534	1,0188	1,0180	1,0534

Etapa 01 Etapa 02 Etapa 03 Etapa 01 Etapa 02 Etapa 03 Seção η η η χс χс χс ρp 1,2237 1,8613 0,00311 0 1,4066 1,01 1,01 1,51 1,2237 1,25 1,25 0,00311 1 1,4066 1,8613 2,52 2 1,8613 0,00311 1,4066 1,2237 1,68 1,68 3,32 3 1,4066 1,2237 1,8613 1,91 1,91 3,68 0,00311 4 1,4066 1,2237 1,8613 1,97 1,97 3,77 0,00311 5 1,2237 1,4066 1,8613 1,97 1,97 3,77 0,00311

	Etapa 01	Etapa 02	Etapa 03	Final	
Seção	Δσ _P (kN/m²)	Δσ _P (kN/m²)	Δσ _P (kN/m²)	Δσ _p (kN/m²)	P∞ (kN)
0	-65145	-25237	-136275	-226657	2347,8
1	-72437	-24379	-123076	-219893	2400,4
2	-83826	-21214	-106491	-211530	2443,6
3	-89301	-18982	-95117	-203400	2487,2
4	-89536	-17550	-88005	-195091	2515,0
5	-89340	-17394	-86446	-193180	2524,7

1.1.8.1 Perdas por seção

Seção	Pi (kN)	Po (kN)	Perdas	Perdas totais
Seçau	I I (KIN)	FU (KIN)	progressivas (%)	(%)
0	2884,7	2347,8	18,6	31,8
1	2921,3	2400,4	17,8	29,9
2	2944,7	2443,6	17,0	28,4
3	2969,1	2487,2	16,2	26,8
4	2977,1	2515,0	15,5	25,9
5	2982,3	2524,7	15,3	25,6

CONSÓRCIO:

1.1.9 Verificação do estado limite último de flexão (ELU)

 $M_{sdm\acute{a}x} = 6136,52 \text{ kN.m}$ d = 1,53 m 0,8x = 0,10 m < 0,23 m LN na laje $\epsilon_{sp} = 10$ %

- Determinação do pré-alongamento

 $\epsilon_{p0} = 4.80 \% o$ $\sigma_{cpn} = 7293 \text{ kN/m}^2$ $\epsilon_{cpn} = -\epsilon_{pn} = 0.21 \% o$ $\epsilon_{pi} = \epsilon_{p0} + \epsilon_{pn} = 5.00 \% o$ $\epsilon_{p} = 15.00 \% o$ $\sigma_{p} = 1507 \text{ MPa}$

- Momento resistente de cálculo

Número de cordoalhas n = 24Área de cada cordoalha = 0,987 cm²

 $MRd1 = n * Ap * \sigma_P * (d - 0.5 * 0.8x) = 5280,53 kN.m$

MRd1 = 5280,53 kN.m < Msdmáx = 6136,52 kN.m → Adicionar armadura passiva

- Armadura passiva

Adicionando: 3 barras de 25,0 As = 15 cm^2 d1 = 1,53 m d2 = 1,68 m 0.8x = 0.12 m $\epsilon \text{sp} = 10 \% \text{o}$ $\epsilon \text{pi} = \epsilon \text{p0} + \epsilon \text{pn} = 5,00 \% \text{o}$ $\epsilon \text{p} = 15,00 \% \text{o}$ $\epsilon \text{p} = 1507 \text{ MPa}$

Momento resistente de cálculo

MRd2 = As * fyd * (d2 - 0.5 * 0.8x) = 1038,20 kN.m

MRd = MRd1 + MRd2

MRd = 6286,55 kN.m > Msdmáx = 6136,52 kN.m → OK!

1.1.10 Dimensionamento dos esforços cortantes

Verificação esforços cortantes

fck = 40 MPa fcd = 29 MPa fctm = 3,51 MPa fctd = 1,75 MPa

bw = 0,18 m ← Demais seções d = 1,53 m

bw = 0,30 m ← Seção 0

Verificação do concreto: Vsd ≤ VRd2

Vsd = 1052,72 kN

VRd2 = 1545,50 kN > Vsd OK!

Parcela resistida pelo concreto (Modelo I) → Vc = 289,90 kN ← Demais seções Vc = 483,16 kN ← Seção 0

Seção	Psenα (kN)	Vsd (kN)	M₀ (kN.m)	β	β x Vc (kN)	Vsw (kN)	Asw (cm²/m)	Δσs (MPa)	α
0	160,71	908,08	661,64	1,0	483,16	666,50	11,13	77,33	1,00
1	164,50	729,87	1313,43	1,6	461,35	499,20	8,34	83,29	1,00
2	167,84	555,83	1702,65	1,4	415,33	348,17	5,82	96,92	1,14
3	171,03	385,99	1880,16	1,4	395,87	188,06	3,14	121,53	1,43
4	172,98	221,45	1935,38	1,3	385,27	28,82	0,48	169,33	1,99
5	173,64	61,97	1942,79	1,3	381,68	0,00	0,00	145,00	1,71

$$\beta = 1 + \frac{M_0}{M_{sdm\acute{a}x}} \le 2$$

Fator de fadiga: $\alpha = \frac{\Delta \sigma_s}{\Delta f_{sd}}$ sendo, $\Delta f_{sd} = 85$ MPa

Seção	Asw $x \alpha$	Estribo	os
Seçao	(cm²/m)	bitolas	ramos
0	11,13	8,0 c. 9	2
1	8,34	8,0 c. 12	2
2	6,63	8,0 c. 15	2
3	4,49	8,0 c. 20	2
4	2,90	8,0 c. 20	2
5	2,90	8,0 c. 20	2

$$A_{\text{swmin}} = \frac{0.2 \times b_{w} \times f_{\text{ctm}}}{f_{\text{ywk}}}$$

1.1.10.1 Dimensionamento da fretagem dos cabos na cabeça das longarinas

Fretagem segundo a NCHRP (National Cooperative Highway Research Program)

 $A = 30 \times 30 = 900 \text{ cm}^2$

 $Ab = 22 \times 22 = 484 \text{ cm}^2$

fck = 40 MPa

A bainha = 23.8 cm^2

Ab útil = $460,2 \text{ cm}^2$

Força de protensão = 1107,58 kN

 $\sigma c = 24,1 \text{ MPa}$

Parcela 01, espraiamento da carga:

Fult = 2008 kN

Desconsiderando a parcela 02 (efeito da fretagem), temos:

F.S = 1,65

- Armaduras de fretagem na direção vertical:

 $A_{sv} = 2,24 \text{ cm}^2 \rightarrow 7,47 \text{ cm}^2/\text{m}$

- Armaduras de fretagem na direção horizontal:

 $A_{SV} = 2,24 \text{ cm}^2 \rightarrow 7,47 \text{ cm}^2/\text{m}$

1.1.11 Verificações das tensões em serviço (ELS)

	Esforços solicitantes										
Seção	Mg1	Mg2	Mg3	Mq	P ₀ cosα	P∞	Simples	Comp.			
Seçao	(kN.m)	(kN.m)	(kN.m)	(kN.m)	(kN)	$cos\alpha(kN)$	e _p (m)	e _p (m)			
0	0,00	0,00	0,00	0,00	2875,98	2340,70	-0,049	0,417			
1	232,40	300,20	237,10	787,80	2912,45	2393,14	0,252	0,718			
2	413,10	533,70	421,50	1392,00	2935,75	2436,20	0,420	0,886			
3	542,20	700,50	553,20	1812,50	2960,06	2479,70	0,486	0,952			
4	619,60	800,50	632,20	2075,10	2968,10	2507,36	0,501	0,967			
5	645,40	833,90	658,60	2166,90	2973,27	2517,05	0,501	0,967			

	Tensões (kN/m²)										
Seção	Prot. Inicial (Pi)		σN	σMg1		σMg2		σMg3			
Seçau	σi	σs	σi	σs	σi	σs	σi	σs			
0	-6672	-8849	0	0	0	0	0	0			
1	-13104	-1730	1684	-1918	2175	-2478	1074	-307			
2	-16782	2327	2993	-3410	3867	-4405	1909	-545			
3	-18336	3959	3928	-4475	5075	-5782	2505	-716			
4	-18713	4342	4489	-5114	5800	-6608	2863	-818			
5	-18746	4350	4676	-5327	6042	-6883	2983	-852			

Tensões (kN/m²)								
Seção -	σ	Mq	σре	rdas				
	σi	σs	σi	σs				
0	0	0	1712	414				
1	3568	-1019	2369	199				
2	6304	-1801	2659	83				
3	8209	-2345	2700	39				
4	9398	-2685	2622	28				
5	9814	-2803	2596	28				

- Combinações (Protensão limitada)

Ato da protensão: 1,1 x Pi + 0,9 x Mg1

Fim da construção: Pi + Mg1 + Mg2 + Mg3 + Perdas/2

Comb. Frequente: Pi + Mg1 + Mg2 + Mg3 + Perdas + ψ 1 x Mq Comb. Quase-perm.: Pi + Mg1 + Mg2 + Mg3 + Perdas + ψ 2 x Mq

			Verifi	cações (kl	V/m²)			
Seção	Ato da protensão		Fim da construção		Comb. Frequente $(\psi_1 = 0.5)$		Comb. Quase- perm. (ψ 2 = 0,3)	
	σi	σs	σi	Ωs	σi	Ωs	σi	σs
0	-7339	-7964	-5816	-8643	-4960	-8436	-4960	-8436
1	-12899	-3475	-6987	-6333	-4019	-6743	-4732	-6540
2	-15766	-509	-6684	-5992	-2202	-6851	-3463	-6491
3	-16634	327	-5477	-6995	-23	-8148	-1664	-7679
4	-16544	173	-4250	-8184	1760	-9512	-120	-8975
5	-16412	-10	-3747	-8699	2458	-10087	495	-9526

Limitações das tensões de acordo com NBR 6118/2014

Compressão			Tração			
σ c <u><</u>	$0.7 \times f_{ckj} =$	-24,5 MPa	σ t <u><</u>	$1,2 \times f_{ctkj} =$	2,7 MPa	(Ato protensão)
σ c <u><</u>	$0.7 \times fck =$	-28,0 MPa	σ t <u><</u>	$1,2 \times f_{ctk} =$	2,9 MPa	(Em serviço)

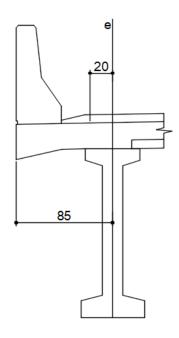
1.1.12 Armaduras complementares

Pele: $\begin{cases} \text{Alma de 18cm: } \phi 6,3c.16 \\ \text{Alma de 30cm: } \phi 8,0c.16 \end{cases}$

1.1.13 Dimensionamento para içamento das longarinas

Peso próprio da longarina = 9,35 x 19,30 + 12,75 x 2,50 x 2 = 244,20 kN

Peso suportado por um cabo = 122 kN


$$A_{s} = \frac{1,4 \times 122}{43,5} = 3,93 cm^{2} \rightarrow Adotado: 4\phi12,5$$

1.2 Lajes

1.2.1 Lajes em balanço

Momentos para cargas permanentes

$$M_{xeq} = 6,63 \text{ kN.m/m}$$

Momentos para impacto de 100 kN no topo da barreira

$$M_{xeq} = \frac{100 \times 0.87}{2 \times (0.87 + 0.45)} = 32,95 \text{ kN.m/m}$$

Momentos para cargas móveis

$$M_{xeq} = 1,35 \times 75 \times 0,10 = 10,12 \text{ kN.m/m}$$

Dimensionamento $f_{ck} = 30 MPa$ cob = 2.5 cm

$$M_{xed} = 1,35 \times 6,63 + 1,5 \times 32,95 = 58,38 \text{ kN.m/m} = 5838 \text{ kN.cm/m}$$

$$k_c = \frac{100 \times 19^2}{5838} = 6.18 \rightarrow A_s^- = 7.41 \, \text{cm}^2 \, / \, \text{m} > A_{smin} = 3.45 \, \text{cm}^2 \, / \, \text{m} \rightarrow \phi 10.0c.10$$

Para as armaduras de distribuição, foram adotados: $A_{sdistr} = \phi 8,0c.14$

1.2.2 Laje central

Para o dimensionamento da laje central será utilizada a tabela de Rüsch nº 14 com placa engastada-apoiada.

$$I_{y} = 2,20 \ m$$

$$I_{x}/a = 1,10$$

$$t/a = 0.343$$

$$\phi = 1,35$$

$$I_{y} = 2,20 \text{ m}$$
 $I_{y}/a = 1,10$ $t/a = 0,343$ $\phi = 1,35$ $g = 9,83 \text{ kN/m}^2$

Momentos para cargas permanentes

$$M_{xmg} = 0.0625 \times 9.83 \times 2.20^2 = 2.97 \text{ kN.m/m}$$

$$M_{vmq} = 0.011 \times 9.83 \times 2.20^2 = 0.52 \text{ kN.m/m}$$

$$-M_{xeg} = 0.125 \times 9.83 \times 2.20^2 = 5.95 \text{ kN.m/m}$$

Momentos para cargas móveis

$$M_{xma} = 1.35 \times (75 \times 0.198 + 5 \times 0.02) = 20.18 \text{ kN.m/m}$$

$$M_{vma} = 1,35 \times (75 \times 0,102 + 5 \times 0,02) = 10,46 \text{ kN.m/m}$$

$$-M_{xea} = 1,35 \times (75 \times 0,332 + 5 \times 0,25) = 35,30 \text{ kN.m/m}$$

Momentos gerados pela distribuição transversal das cargas móveis

$$M_{xma} = 1,35 \times 75 \times 0,371/1,5 = 25,04 \text{ kN.m/m} \rightarrow M_{xma} = 25,04 \text{ kN.m/m}$$

$$-M_{xeg} = 1.35 \times 75 \times 0.210 / 1.5 = 14.18 \text{ kN.m/m} \rightarrow -M_{xeg} = 35.30 \text{ kN.m/m}$$

Dimensionamento

$$f_{ak} = 30 MPa$$

$$f_{ck} = 30 MPa$$
 cob = 2,5 cm

$$M_{xmd} = 1,35 \times 2,97 + 1,5 \times 25,04 = 41,57 \text{ kN.m/m} = 4157 \text{ kN.cm/m}$$

$$k_c = \frac{100 \times 19^2}{4157} = 8,68 \rightarrow A_s = 5,19 \text{ cm}^2 / m > A_{smin} = 3,45 \text{ cm}^2 / m$$

Fadiga:
$$A_s = 6{,}00 \text{ cm}^2 \text{ / } m \rightarrow \Delta \sigma_s = 188{,}37 \text{ MPa} \rightarrow \phi \text{ 10,0 c.13}$$

$$M_{ymd} = 1,35 \times 0,52 + 1,5 \times 10,46 = 16,39 \text{ kN.m/m} = 1639 \text{ kN.cm/m}$$

$$k_c = \frac{100 \times 14^2}{1639} = 11,96 \rightarrow A_s = 2,76 \text{ cm}^2 / m < A_{smin} = 3,45 \text{ cm}^2 / m$$

Fadiga:
$$A_s = 3,45 \text{ cm}^2 / \text{m} \rightarrow \Delta \sigma_s = 184,33 \text{ MPa} \rightarrow \phi 8,0 \text{ c.}14$$

$$-M_{xed} = 1,35 \times 5,95 + 1,5 \times 35,30 = 60,98 \text{ kN.m/m} = 6098 \text{ kN.cm/m}$$

$$k_c = \frac{100 \times 19^2}{6098} = 5,92 \rightarrow A_s = 7,74 \text{ cm}^2 / m > A_{\text{smin}} = 3,45 \text{ cm}^2 / m$$

Fadiga:
$$A_s = 8,50 \text{ cm}^2 / \text{m} \rightarrow \Delta \sigma_s = 189,71 \text{ MPa} \rightarrow \phi 12,5c.14$$

• Lajes em balanço no início e final

Para o dimensionamento da laje central será utilizada a tabela de Rüsch nº 98.

$$I_x = 1,00 \ m$$
 $I_x / a = 0,50 \ t / a = 0,343 \ \phi = 1,35 \ \text{CIV} = 1,25 \ g = 9,83 \ kN / m^2$

Momentos para cargas permanentes

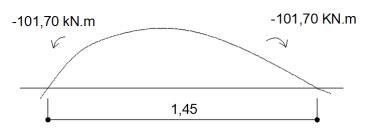
$$-M_{xeg} = 0.50 \times 9.83 \times 1.00^2 = 4.92 \text{ kN.m/m}$$

Momentos para cargas móveis

$$-M_{xea} = 1,35 \times 1,25 \times (75 \times 0,374 + 5 \times 0,10) = 48,18 \text{ kN.m/m}$$

Dimensionamento $f_{ck} = 30 MPa$ cob = 2,5cm

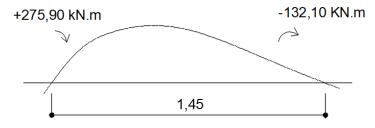
$$-M_{xed} = 1,35 \times 4,92 + 1,5 \times 48,18 = 78,91 \text{ kN.m/m} = 7891 \text{ kN.cm/m}$$


$$k_c = \frac{100 \times 18^2}{7891} = 4,11 \rightarrow A_s = 10,87 \text{ cm}^2 / m > A_{smin} = 3,45 \text{ cm}^2 / m$$

Fadiga:
$$A_{\rm s} =$$
 12,50 cm^2 / $m \rightarrow \Delta \sigma_{\rm s} =$ 189,16 $MPa \rightarrow \phi$ 12,5 c .10

1.2.3 Lajes elásticas

As lajes elásticas serão dimensionadas para absorver as rotações do tabuleiro. Os esforços serão determinados com os seguintes carregamentos:


a) Carga permanente da fase g3

b) Carga móvel sobre o vão intermediário

Dimensionamento

$$f_{ck} = 30 \, MPa$$

$$cob = 2,5cm$$

Os momentos obtidos serão divididos pela largura da placa de 10,50m.

$$-M_d = \frac{\left(1{,}35 \times 101{,}70 + 1{,}5 \times 132{,}10\right)}{10{,}50} = 31{,}95 \text{ kN.m/m} = 3195 \text{ kN.cm/m}$$

$$k_c = \frac{100 \times 12^2}{3195} = 4.51 \rightarrow A_s = 6.55 \text{ cm}^2 / m > A_{smin} = 2.40 \text{ cm}^2 / m$$

Fadiga: $A_s = 6,55 \text{ cm}^2 / \text{m} \rightarrow \Delta \sigma_s = 139,98 \text{ MPa} \rightarrow \text{Adotado}: \phi 10,0c12$

$$+M_d = \frac{\left(-1,0 \times 101,70 + 1,5 \times 275,90\right)}{10,50} = 29,73 \text{ kN.m/m} = 2973 \text{ kN.cm/m}$$

$$k_c = \frac{100 \times 12^2}{2973} = 4.84 \rightarrow A_s = 6.07 \text{ cm}^2 / m > A_{smin} = 2.40 \text{ cm}^2 / m$$

Fadiga: $A_s = 6.07 \text{ cm}^2 / \text{m} \rightarrow \Delta \sigma_s = 169.60 \text{ MPa} \rightarrow \text{Adotado}: \phi 10.0 \text{ c.}13$

1.3 Transversinas de apoio

Cargas permanentes

 $g_1 = 0.66 \times 25 = 16.50 \, kN / m$ (Peso próprio)

$$M_{g_{+}} = 5,60 kN.m$$
 $M_{g_{-}} = 8,20 kN.m$ $V_{g} = 21,40 kN$

$$M_{q-} = 8,20 kN.m$$

$$V_q = 21,40 kN$$

Cargas móveis

$$Q = \frac{1,35 \times 450}{2} = 303,75 \text{kN}$$
 (Por roda)

$$M_{q+} = 136,80 \text{kN.m}$$
 $M_{q-} = 120,10 \text{kN.m}$ $V_q = 338,70 \text{kN}$

$$M_{q_{-}} = 120,10 kN.m$$

$$V_{q} = 338,70kN$$

1.3.1 Dimensionamento à flexão

$$M_d^- = 1,35 \times 8,20 + 1,5 \times 120,10 = 191,22 \text{ kN.m} = 19122 \text{ kN.cm}$$

$$k_c = \frac{25 \times 148^2}{19122} = 28,64 \rightarrow A_s^- = 3,01cm^2 < A_{smin} = 5,81cm^2 \rightarrow 3\phi 16,0$$

$$M_d^+ = 1,35 \times 5,60 + 1,5 \times 136,80 = 212,76 \text{ kN.m} = 21276 \text{ kN.cm}$$

$$k_c = \frac{25 \times 148^2}{21276} = 25,74 \rightarrow A_s^+ = 3,35 \text{ cm}^2 < A_{smin} = 5,81 \text{ cm}^2 \rightarrow 3\phi 16,0$$

1.3.2 Dimensionamento ao cortante

$$V_d = 1,35 \times 21,40 + 1,5 \times 338,70 = 536,94 \text{ kN}$$

$$V_{Rd2} = 0,27 \times 0,88 \times 21429 \times 0,25 \times 1,48 = 1884 \ kN > V_d \rightarrow OK$$

$$V_c = 0.6 \times 1448 \times 0.25 \times 1.48 = 321 \, kN$$

$$V_{sw} = 537 - 321 = 216 \ kN$$

$$A_{\text{sw}} = \frac{0.216}{0.9 \times 435 \times 1.48} = 0.000373 \ m^2 / m = 3.73 \ cm^2 / m > A_{\text{swmin}} = 3.48 \ cm^2 / m \rightarrow \phi \ 8.0c20 \ (2 \ ramos)$$

$$A_{\text{spele}} = 0.10 \times 25 = 2.50 \text{ cm}^2 / m \rightarrow \phi 8.0 \text{ c.} 20$$

2 MESOESTRUTURA

2.1 Alas

Cargas verticais

 $G_1 = 69,70kN$ (Peso próprio)

Dimensionamento $f_{ck} = 30 MPa$ cob = 2,5cm

$$M_d = 1,35 \times 69,70 \times 1,33 = 125,15 \text{ kN.m} = 12515 \text{ kN.cm}$$

$$k_c = \frac{40 \times 324^2}{12515} = 335,53 \rightarrow A_s = 0,90 \text{ cm}^2 < A_{smin} = 19,80 \text{ cm}^2 \rightarrow 6\phi 20,0$$

· Cargas horizontais

Pressão do solo: 19,60 kN/m²

Pressão da sobrecarga: 8,25 kN/m²

Pressão média: 18,05 kN/m²

Dimensionamento

$$M_d = \frac{1,35 \times 18,05 \times 6,97 \times 1,33}{3,30} = 68,46 \text{ kN.m} = 6846 \text{ kN.cm}$$

$$k_c = \frac{100 \times 34^2}{6846} = 17,34 \rightarrow A_s = 4,65 \text{ cm}^2 / m < A_{smin} = 6,00 \text{ cm}^2 / m \rightarrow \phi 10,0c.13$$

Armadura na face externa: $A_{smin} = 6,00 \text{ cm}^2 / m \rightarrow \phi 10,0c.13$

Estribos verticais: $A_{\text{swmin}} = 4,64 \text{ cm}^2 / m \rightarrow \phi 8,0c.20 \text{ (2 } ramos)$

2.2 Cortinas

As cortinas serão avaliadas para as solicitações decorrentes das pressões de solo, e da reação de apoio da laje de transição.

Pressões de solo

 $p = 10,32 \text{ kN/m}^2$

$$M = \left(10,32 \times \frac{1,30}{2}\right) \times 0,43 = 2,88 \text{ kN.m/m} = 288 \text{ kN.cm/m}$$

$$k_c = \frac{100 \times 25^2}{288} = 217,01 \rightarrow A_s = 0,27 \text{ cm}^2 / m < A_{smin} = 4,50 \text{ cm}^2 / m \rightarrow \phi 10,0c.17$$

Essa armadura será colocada verticalmente, na face em contato com o solo.

Reação da laje de transição

$$R = 30 + 1,35 \times 1,25 \times 75 = 157 \text{ kN.cm/m}$$

$$M = 157 \times 0.30 = 47.10 \text{ kN.m/m} = M_d = 1.5 \times 4710 = 7065 \text{ kN.cm/m}$$

$$k_c = \frac{100 \times 25^2}{7065} = 8,85 \rightarrow A_s = 6,73 \text{ cm}^2 / m > A_{smin} = 4,50 \text{ cm}^2 / m \rightarrow \phi 10,0 \text{ c.11}$$

Essa armadura será colocada verticalmente, na face aparente da cortina.

As armaduras horizontais nas duas faces serão $A_{\rm smin} = 4,50~{\rm cm^2}~/~{\rm m} \rightarrow \phi 10,0c.17$

2.3 Cargas verticais da superestrutura

Rg = 386,70 kN/longarina

 $R_q = 166,50 \text{ kN/longarina}$

RQ = 217,00 kN/longarina

2.4 Cargas verticais da mesoestrutura

Apoios extremos

Bloco corrido = 57,00 kN/m

Cortinas = 15,75 kN/m

Laje de transição = 30,00 kN/m

Apoio central

Travessa = 60,00 kN/m

Pilares = 102,00 kN

2.5 Aparelho de apoio

• Apoio P1=P2=P3

Os aparelhos de apoio utilizados terão 250x300x42mm, sendo 3 camadas de elastômero com 8 mm e 4 chapas de aço com 3 mm.

$$\sigma_{max} = \frac{0,770}{0,25 \times 0,30} = 10,27 MPa \rightarrow OK$$

$$k_a = \frac{1000 \times 0,25 \times 0,30}{3 \times 0,008} = 3125 \text{ kN/m} \text{ por aparelho de apoio}$$

2.6 Rigidez longitudinal

Blocos/Pilares (Diâmetro = 100cm)

P1=P3:
$$k_p = \infty$$

P2:
$$k_p = \frac{3 \times 26072 \times 0,049}{5,20^3} = 27257 \ kN/m$$

Conjunto apoio + aparelho de apoio

P1=P3:
$$\frac{1}{k_{l}} = \frac{1}{\infty} + \frac{1}{5 \times 3125} \rightarrow k_{L} = 15625 \ kN/m$$

P2:
$$\frac{1}{k_L} = \frac{1}{2 \times 27257} + \frac{1}{10 \times 3125} \rightarrow k_L = 19863 \ kN/m$$

Rigidez transversal

Pórticos

A rigidez transversal dos pórticos foi obtida através do software de análise estrutural "Ftool".

P1=P3:
$$k_{pt} = \infty$$

P2:
$$k_{pt} = 193723 kN / m$$

Conjunto pilar + aparelho de apoio

P1=P3:
$$\frac{1}{k_{\tau}} = \frac{1}{5 \times 3125} \rightarrow k_{L} = 15625 \ kN/m$$

P2:
$$\frac{1}{k_T} = \frac{1}{193723} + \frac{1}{10 \times 3125} \rightarrow k_L = 26909 \ kN/m$$

Forças horizontais longitudinais

Frenagem e aceleração

$$F = 0.05 \times 5 \times 8.00 \times 50.00 = 100.00 \, kN < 135.00 \, kN$$

P1=P3:
$$H_L = 135 \times \frac{15625}{51113} = 41,27 \text{ kN /apoio}$$

P2:
$$H_L = 135 \times \frac{19863}{51113} = 52,46 \text{ kN /apoio}$$

 Temperatura e retração (P1 ao P3): ΔT = 36°C (PDN = 24,05m à direita do apoio P1)

P1=P3:
$$H_L = 15625 \times 36 \times 10^{-5} \times 24,05 = 135,28 \text{ kN/apoio}$$

• Somatório de forças horizontais longitudinais

P1=P3:
$$H_L = 41,27 + 135,28 = 176,55 \text{ kN/apoio}$$

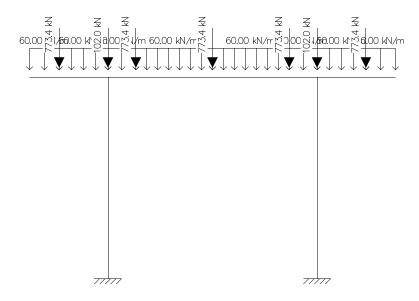
P2:
$$H_L = 52,46 \text{ kN / apoio}$$

2.9 Forças horizontais transversais

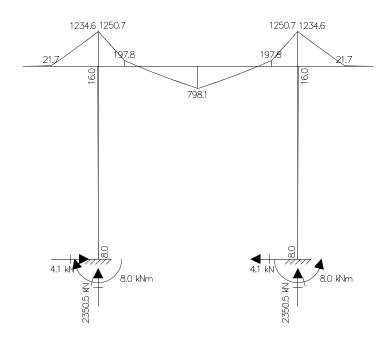
• Vento:
$$H_w = 50,00 \times 2,60 \times 1,50 = 195,00 \text{ kN}$$

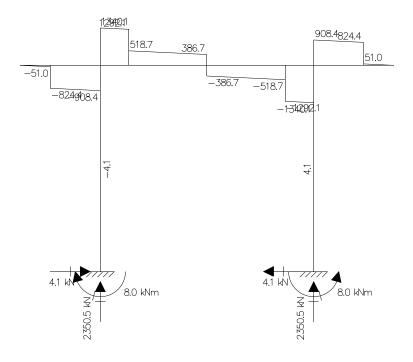
P1=P3:
$$H_v = 195 \times \frac{15625}{58159} = 52,39 \text{ kN/} \text{ apoio}$$

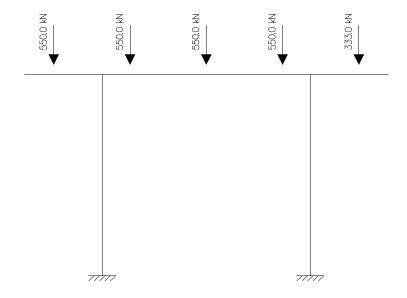
P2:
$$H_v = 195 \times \frac{26909}{58159} = 90,22 \text{ kN/ apoio}$$


2.10 Esforços nos pórticos

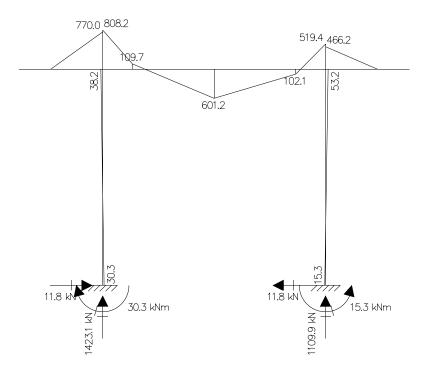
2.10.1 Pórtico P2


Cargas permanentes

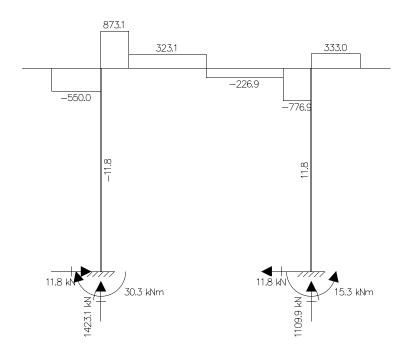

- Momentos fletores

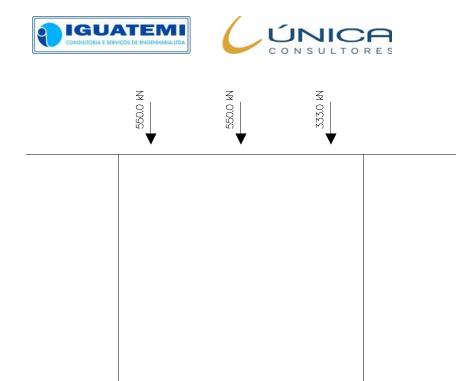

- Esforços cortantes

• Cargas móveis (Hipótese 1)



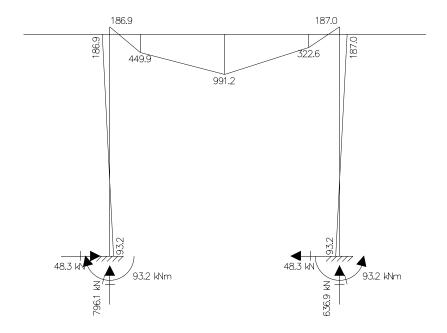
- Momentos fletores


119



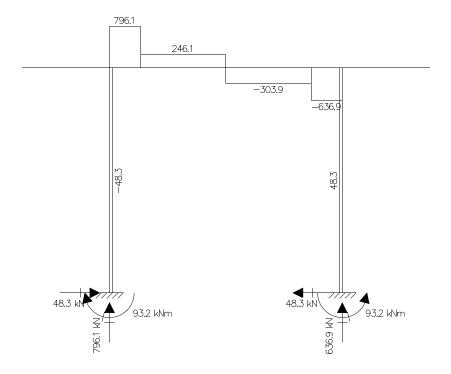
- Esforços cortantes

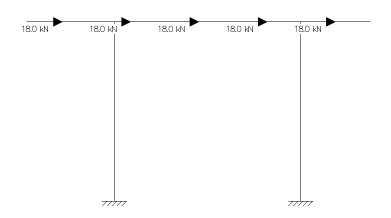
• Cargas móveis (Hipótese 2)

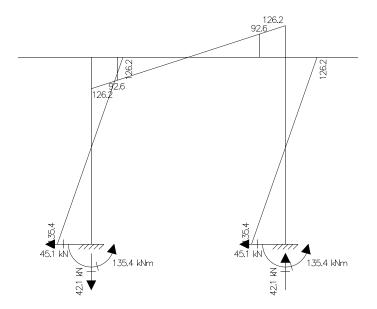

120

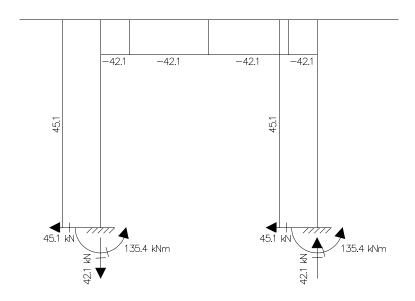
11111

7////


- Momentos fletores


- Esforços cortantes


Vento


- Momentos fletores

- Esforços cortantes

2.11 Dimensionamento travessa P2

Apoios E1=E2

$$M_d^- = 1,35 \times 1251 + 1,50 \times 934 = 3089,85 \text{ kN.m} = 308985 \text{ kN.cm}$$

$$k_c = \frac{200 \times 113.5^2}{308985} = 8.34 \rightarrow A_s^- = 65.06 \text{ cm}^2 > A_{smin} = 36.00 \text{ cm}^2 \rightarrow 13\phi 25.00 \text{ cm}^2$$

$$M_d^+ = 1,35 \times 798 + 1,50 \times 991 = 2563,80 \text{ kN.m} = 256380 \text{ kN.cm}$$

$$k_c = \frac{200 \times 113,5^2}{256380} = 10,05 \rightarrow A_s^+ = 53,53 \text{ cm}^2 > A_{smin} = 36,00 \text{ cm}^2 \rightarrow 11\phi 25,0$$

$$V_d = 1,35 \times 1340 + 1,5 \times 915 = 3182 \text{ kN}$$

$$V_{Rd2} = 0,27 \times 0,88 \times 21429 \times 2,00 \times 1,13 = 11507 \text{ kN} > V_d \rightarrow OK$$

$$V_c = 0.6 \times 1448 \times 2.00 \times 1.13 = 1964 \text{ kN}$$

$$V_{sw} = 3182 - 1964 = 1218 \ kN$$

$$A_{sw} = \frac{1,218}{0,9 \times 435 \times 1,13} = 0,002753 m^2 / m = 27,53 cm^2 / m > A_{swmin} = 23,18 cm^2 / m$$

Adotado
$$\rightarrow \phi$$
 10,0c.17 (6 ramos)

$$A_{\text{spele}} = 0.10 \times 200 = 20.00 \ \text{cm}^2 \ / \ \text{m} > 5.00 \ \text{cm}^2 \ / \ \text{m} \rightarrow \phi \ 10.0c.16$$

2.12 Dimensionamento pilar P2

Armação: $16\phi16 \text{ mm (As} = 32.17 \text{ cm}^2)$

Propriedade seção bruta de concreto:

Área: $Ac = 7854 \text{ cm}^2$

Centro de gravidade: $x_{cg} = 50$ cm

 $v_{cg} = 50 \text{ cm}$

Inércia em relação ao cg: Ix = 4908739 cm⁴

 $Iy = 4908739 \text{ cm}^4$

Taxa de armadura: $\rho_s = 0.41 \%$

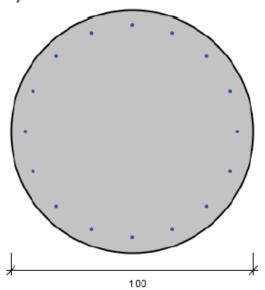
Materiais: Concreto fck = 30 MPa

Aço fyk = 500 MPa

Tipo de vinculação: Pilar em Balanço

Comprimento: L = 520 cm

Índice de Esbeltez: $\lambda_x = 42$


 $\lambda_y = 42$

Estribos: ϕ 5,0c.15

Consideramos as combinações da seguinte forma:

$$\textit{F}_{d} = \textit{1}, \textit{35} \times \textit{F}_{g} + \textit{1}, \textit{50} \times \textit{F}_{q}$$

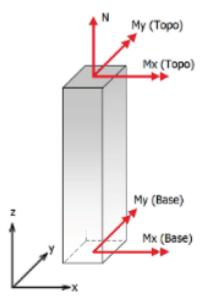
Seção Transversal:

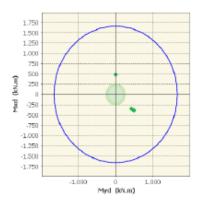
$$F_d = 1,00 \times F_g + 1,50 \times F_q$$

$$F_d = 1.35 \times F_g + 1.00 \times F_q$$

O software utilizado, PCalc, utiliza um coeficiente único. Para esse coeficiente, adotamos 1,4. Portanto, faremos a combinação apresentada acima, dividindo por 1,4, obtendo o valor característico que será usado no software.

	P	2
	Hip 1	Hip 2
Ng	2351	2351
Nq	1465	838
Nk	3837	3165
MTtg	16	16
MTtq	164	313
M Ttk	133	347
MTbg	8	8
Мтьq	166	229
MTbk	183	251
MLk	304	304




Figura: Convenção de sinais positivos dos esforços, N < 0 para compressão

Combinação	Nsk	Msk,x(Topo)	Mak,y (Topo)	Msk,x (Base)	Maky (Base)
1	-3837	133	0	183	304
2	-3165	347	0	251	304

Tabela: Combinação de esforços, Unidades [kN, kN.m]

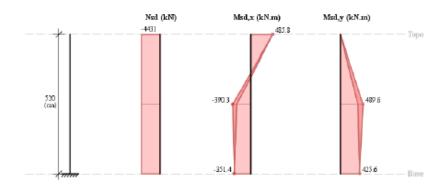


Figura: Diagrama de interação (Comb. 2)

Figura: Esforços solicitantes de cálculo (Comb. 2)

Determinação dos efeitos locais de 2ª Ordem (Método pilar-padrão com rigidez 1 aproximada)

Momentos em torno do eixo x:

O momento total em torno da direção x é calculado pela expressão:

$$M_{d,tot,x} = \frac{-B + \sqrt{B^2 - 4 A C}}{2 A} = 390.3 \text{ kN.m}$$

Com:

A = 5 hy = 5 x 1 = 5 m;
B = hy² N₁d - (N₁d
$$\ell_0$$
²) / 320 - 5 hy α_0 M_{d1,A} = 1² x 4431 - (4431 x 10.4²) / 320 - 5 x 1 x 0.85 x -351.4 = 4426.772 kN m²;
C = - N₁d hy² α_0 M_{d1,A} = -4431 x 1² x 0.85 x -351.4 = -1323495.39 kN² m³;
 α_0 = 0.80 + 0.20 Mc / M_A = 0.80 + 0.20 (67.2) / -351.4 = 0.76175, α_0 \geq 0.85.

Momentos em torno do eixo y:

O momento total em torno da direção y é calculado pela expressão:

$$M_{d,tot,y} = \frac{-B + \sqrt{B^2 - 4 A C}}{2 A} = 489.6 \text{ kN.m}$$

Com:

A = 5 hx = 5 x 1 = 5 m;
B = hx² N₁d - (N₂d
$$\ell_0$$
²) / 320 - 5 hx ϵ_0 M₂d₁A = 1² x 4431 - (4431 x 10.4²) / 320 - 5 x 1 x 0.9 x 425.6 = 1018.122 kN m²;
C = - N₂d hx² ϵ_0 M₂d₁A = -4431 x 1² x 0.9 x 425.6 = 1697250.24 kN² m³;
 ϵ_0 b = 0.80 + 0.20 Mc / Ma = 0.80 + 0.20 (212.8) / 425.6 = 0.9, ϵ_0 b ≥ 0.85.

3 INFRAESTRUTURA

3.1 Blocos P1=P3

3.1.1 Avaliação das cargas nas estacas

a) Para as cargas verticais

$$V_{\text{sup }er} = 386,70 + 166,50 + 217,00 = 770,20 \, kN / par = 385,10 \, kN / estaca$$

$$V_{meso} = (57,00+15,75+30,00) \times 10,50+69,70 \times 2 = 1218,28 \, kN / apoio = 121,83 \, kN / estaca$$

 $V_{total} = 385,10+121,83 = 506,93 \, kN / estaca$

b) Esforços horizontais

Pressão de solo no encontro = 17,57 x 9,50 = 166,91 kN/apoio Frenagem e aceleração = 41,27 kN/apoio Temperatura e retração = 135,28 kN/apoio Somatória dos esforços = 343,46 kN/apoio = 34,35 kN/estaca

c) Momentos

Devido as cargas verticais das cortinas = $(15,75+30,00)\times9,70\times0,80=355,02$ kN.m Devido a pressão de solo = $166,91\times0,84=140,20$ kN.m Devido a frenagem e deformação = $(41,27+135,28)\times1,20=211,86$ kN.m Momento resultante = 355,02-140,20-211,86=2,96 kN.m

d) Cargas máximas nas estacas

$$V_{m\acute{a}x} = 506,93 + \frac{2,96}{1,20} = 509,40 \, kN$$

3.1.2 Armadura transversal, sobre cada par de estacas

$$M_d = 1,40 \times 0,60 \times 509,40 = 427,90 \, kN.m$$

$$k_c = \frac{60 \times 113^2}{42790} = 17,90 \rightarrow A_s^- = 8,86 \text{ cm}^2 < A_{smin} = 10,35 \text{ cm}^2 \rightarrow 6\phi \, 16,0$$

Entre as linhas de estacas, usaremos: ϕ 10,0c15

3.1.3 Armadura longitudinal do bloco corrido

Na direção longitudinal do bloco, utilizaremos armadura mínimas, tanto na face superior quanto na inferior.

$$A_{\rm smin} = 32,78 \ cm^2 \rightarrow 16\phi \ 16,0$$

Usaremos armaduras mínimas de cisalhamento nos blocos, considerando-os como vigas:

$$A_{\text{swmin}} = 22,02 \text{ cm}^2 / m \rightarrow \phi 10,0c14 \text{ (4 ramos)}$$

3.2 Blocos P2

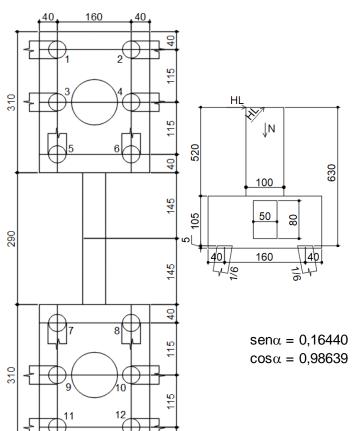
Cargas verticais:

Peso próprio do bloco = 205 kN Peso próprio da viga = 29 kN Solo sobre a infra = 0 kN Peso da infra por pilar = 219 kN Cargas da meso (máx) = 3816 kN Cargas da meso (mín) = 2351 kN

Forças horizontais:

Longitudinal =52 kN/pilarEmpuxo do solo =0 kN/pilarTransversal =90 kN/apoio

Alturas dos centros elásticos


eL = 1,60 m α = 9,46 eT = 3,70 m inclinação = 0,167

Direção longitudinal = 4,80 m Direção transversal = 11,10 m

Cálculo das cargas na estacas

Hipótese de carga máxima

a) Devido ao esforço vertical V = 4035 kN/pilar

240

 $J_V = 5,8378$

F = 681,79 kN F1=F2=F3=F4=F5=F6=F7=F8=F9=F10=F11=F12 681,79 kN

b) Devido ao esforço horizontal longitudinal HL = 52 kN/pilar

0 kN/pilar

JHL = 0,1081 Total = 52 kN/pilar

F = 79,775 kN F1=F3=F9=F11 = -79,78 kN

F2=F4=F10=F12 = 79,78 kN

c) Devido ao esforço horizontal transversal HT = 90 kN/apoio

JHT = 0,1081

F = 137,20 kN F5=F6 = -137,20 kN

F7=F8 = 137,20 kN

d) Devido ao momento causado pela força longitudinal 52 kN/pilar

0 kN/pilar

Total = 52 kN/pilar

h = 6,30 m ri = 0,8

 $\Sigma ri^2 \times cos^2 \alpha = 1,245$

ML = 78,69 kN.m

F = 50,55 kN F5=F7 = -50,55 kN

F6=F8 = 50,55 kN

e) Devido ao momento causado pela força transversal 90 kN/apoio

h = 6,30 m

 $\Sigma ri^2 \times cos^2 \alpha = 102,055$

MT = -433,06 kN.m

F1=F2 = 17,61 kN F3=F4 = 12,73 kN F11=F12 = -17,61 kN F9=F10 = -12,73 kN

f) Superposição dos efeitos

F1 = 619,63 kN F2 = 779,18 kN

F3 = 614,75 kN F4 = 774,30 kN Carga máxima = 869,54 kN

F5 = 494,05 kN F6 = 595,14 kN F7 = 768,44 kN F8 = 869,54 kN F9 = 589,29 kN F10 = 748,84 kN

F11 = 584,41 kN F12 = 743,96 kN

Hipótese de carga mínima

a) Devido ao esforço vertical V = 2570 kN/pilar

Jv = 5,8378

F = 434,26 kN F1=F2=F3=F4=F5=F6=F7=F8=F9=F10=F11=F12 = 434,26 kN

b) Devido ao esforço horizontal longitudinal HL = 52 kN/pilar

0 kN/pilar

JHL = 0,1081 Total = 52 kN/pilar

F = 79,78 kN F1=F3=F9=F11 = -79,78 kN

F2=F4=F10=F12 = 79,78 kN

c) Devido ao esforço horizontal transversal HT = 90 kN/apoio

JHT = 0,1081

F = 137,20 kN F5=F6 = -137,20 kN

F7=F8 = 137,20 kN

d) Devido ao momento causado pela força longitudinal 52 kN/pilar

0 kN/pilar

Total = 52 kN/pilar

h = 6,30 m ri = 0,80

 $\Sigma ri^2 \times cos^2 \alpha = 1,245$

ML = 78,69 kN.m

F = 50,55 kN F5=F7 = -50,55 kN

F6=F8 = 50,55 kN

e) Devido ao momento causado pela força transversal 90 kN/apoio

h = 6,30 m

 $\Sigma ri^2 \times cos^2 \alpha = 102,055$

MT = -433,06 kN.m

F1=F2 = 19,52 kN F3=F4 = 14,43 kN F11=F12 = -19,52 kN F9=F10 = -14,43 kN

f) Superposição dos efeitos

F1 = 374,00 kN F2 = 533,55 kN F3 = 368,91 kN F4 = 528,46 kN

F3 = 368,91 kN F4 = 528,46 kN Carga mínima = 246,51 kN

F5 = 246,51 kN F6 = 347,61 kN F7 = 520,91 kN F8 = 622,00 kN

F9 = 340,06 kN F10 = 499,61 kN

F11 = 334,96 kN F12 = 494,51 kN

Cálculo dos blocos

 $f_{ck} = 30 \text{ MPa}$ h = 110 cm

a) Direção longitudinal $b_w = 310 \text{ cm}$ $W_0 = 0,517 \text{ m}^3$

ML = 1864 kN.m fctk,sup = 3,765 MPa MLd = 2610 kN.m > Md,min = 1556 kN.m

cob = 4,50 cm kc = 12,602d= 103 cm ks = 0,0236

 $A_{SL} = 59.80 \text{ cm}^2 > A_{Smin} = 48.83 \text{ cm}^2$

Adotado: 21 \(\phi \) 20,0

b) Direção transversal

CONSÓRCIO:

 $b_w = 240 \text{ cm}$

 $W_0 = 0,400 \text{ m}^3$

ML = 1858 kN.m fctk,sup = 3,765 MPa MLd = 2601 kN.m > Md,min = 1205 kN.m

cob = 4,50 cm kc = 9,599d = 102 cm ks = 0,0237

 $AsL = 60,44 \text{ cm}^2 > Asmin = 37,80 \text{ cm}^2$

Adotado: 20 \(\phi \) 20,0

c) Armaduras de cintamento nas faces laterais do bloco

Asc = 12,02 cm² por direção

Asc = $6,01 \text{ cm}^2 \text{ em cada face}$ Adotado: $5 \phi 12,5$

Viga de rigidez entre os blocos

Momento transversal no pé do pilar = 174,0 kN.m

Cargas sobre a viga: Peso próprio = 10,0 kN/m

Solo = 5,0 kN/m

Total = 15,0 kN/m

a) Dimensionamento à flexâo

bw = 50 cm h= 80 cm

 $M = 189.8 \text{ kN.m} \quad cob = 4.50 \text{ cm} \qquad d = 74.4 \text{ cm}$

 $M_{sd} = 256,2 \text{ kN.m} > M_{dmin} = 160,7 \text{ kN.m}$

kc = 17,21 ks = 0,0234

As = $8,06 \text{ cm}^2$ Asmin = $6,00 \text{ cm}^2$ Adotado: $4 \phi 16,0$

b) Esforço cortante

Asw min = $5.79 \text{ cm}^2/\text{m}$ Adotado: $\phi 8.0 \text{ c. } 17 \leftarrow 2 \text{ ramos}$

c) Armadura de pele

As = $5,00 \text{ cm}^2$ Adotado: 0.00 cm^2

132

3.3 Dimensionamento geotécnico das estacas

Para a definição da solução de fundação a ser utilizada no Viaduto de Palmeirinha, foram consideradas as sondagens mistas SM-09 a SM-10.

Considerando os perfis estratigráficos apresentados nos boletins individuais das sondagens representativas da região, a solução em fundação direta foi descartada pela baixa capacidade de suporte do solo nos metros iniciais. Dentre as alternativas de estacas tecnicamente viáveis, foram estudadas as alternativas em estacas pré-moldadas e raiz. A primeira foi descartada, pois na camada de solo existente, a estaca não atinge a capacidade de carga necessária para suporte do esforço axial. Desta forma, adotamos a solução em estacas tipo raiz com 400 mm de diâmetro em solo e 310mm em rocha. O comprimento delas será avaliado individualmente por apoio, pelo método Decourt-Quaresma. A carga necessária de suporte, obtida pelo dimensionamento estrutural, é de **509 kN** nos apoios P1 e P3, e **870 kN** no apoio P2. Após o término das camadas de solo, os primeiros 5,00m de rocha são extremamente fraturadas. Por isto, adotaremos um comprimento mínimo em rocha de 5,00m, apoiando a ponta da estaca em rocha sã.

Apoio P1 (SM-09)

Parâmetro das estacas raiz d= 40cm em solo				
Área lateral	1,26 m²/m			
Área ponta	0,13 m²			
Parâmetro das estacas raiz d= 31cm em rocha				
Área lateral	0,97 m²/m			
Área ponta	0,08 m²			

	RESISTÊNCIAS							
Cotas (m)	NSPT	R _{L a cada metro} (kN)	R _{L acumulada/1,3} (kN)	C (kPa)	R _{P/4} (kN)	R (kN)		
1	0	13	10					
2	7	42	42	120	4	46		
3	4	29	64	120	5	70		
4	3	25	84	120	4	88		
5	4	29	106	120	5	111		
6	5	34	132	120	22	154		
7	50	172	264	400	132	396		
8	50	172	397	400	188	585		
9	50	172	529	400	188	718		
10	50	172	662	400	188	850		
11	50	172	794	200	94	888		

Comprimento em solo

Comprimento final, com no mínimo 5 metros em rocha fraturada

• Apoio P2 (SM-09)

Parâmetro das estacas raiz d= 40cm em solo				
Área lateral	1,26 m²/m			
Área ponta 0,13 m²				
Parâmetro das estacas raiz d= 31cm em rocha				
Área lateral	0,97 m²/m			
Área ponta 0,08 m²				

RESISTÊNCIAS							
Cotas (m)	NSPT	R _{L a cada metro} (kN)	R _{L acumulada/1,3} (kN)	C (kPa)	R _{P/4} (kN)	R (kN)	
1	4	29	23				
2	5	34	48	120	22	71	
3	50	172	181	400	132	313	
4	50	172	313	400	188	502	
5	50	172	445	400	188	634	
6	50	172	578	400	188	766	
7	50	172	710	400	188	899	

Comprimento em solo

Comprimento final, com no mínimo 5 metros em rocha fraturada

• Apoio P2 (SM-10)

Parâmetro das estacas raiz d= 40cm em solo				
Área lateral	1,26 m²/m			
Área ponta	0,13 m²			
Parâmetro das estacas raiz d= 31cm em rocha				
Área lateral	0,97 m²/m			
Área ponta	0,08 m²			

	RESISTÊNCIAS							
Cotas (m)	NSPT R _{L a cada metro} (kN) R _{L acumulada/1,3} (kN) C (kPa) R _{P/4} (kN) R							
1	7	42	32					
2	19	92	103	120	29	132		
3	50	172	235	400	150	385		
4	50	172	368	400	188	556		
5	50	172	500	400	188	689		
6	50	172	633	400	188	821		
7	50	172	765	400	188	953		

50

Comprimento em solo

Comprimento final, com no mínimo 5 metros em rocha fraturada

• Apoio P3 (SM-10)

Parâmetro das estacas raiz d= 40cm em solo					
Área lateral	1,26 m²/m				
Área ponta	0,13 m²				
Parâmetro das estacas raiz	Parâmetro das estacas raiz d= 31cm em rocha				
Área lateral	0,97 m²/m				
Área ponta	0,08 m²				

RESISTÊNCIAS							
Cotas (m)	NSPT	R _{L a cada metro} (kN)	R _{L acumulada/1,3} (kN)	C (kPa)	R _{P/4} (kN)	R (kN)	
1	0	13	10				
2	0	13	19	120	2	22	
3	6	38	48	120	3	51	
4	2	21	64	120	5	69	
5	4	29	87	120	4	91	
6	5	34	113	120	5	118	
7	4	29	135	120	6	141	
8	7	42	168	120	11	179	
9	19	92	238	120	29	267	
10	50	172	371	400	150	520	
11	50	172	503	200	94	597	
12	50	172	635	200	94	730	
13	50	172	768	200	94	862	
14	50	172	900	200	72	972	

Comp

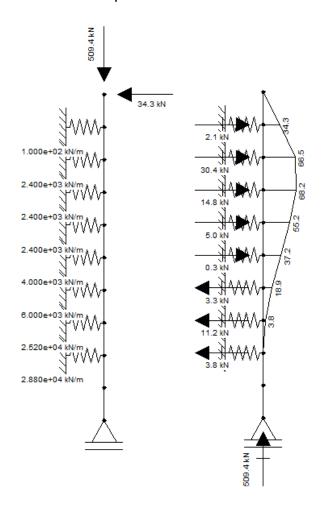
Comprimento em solo

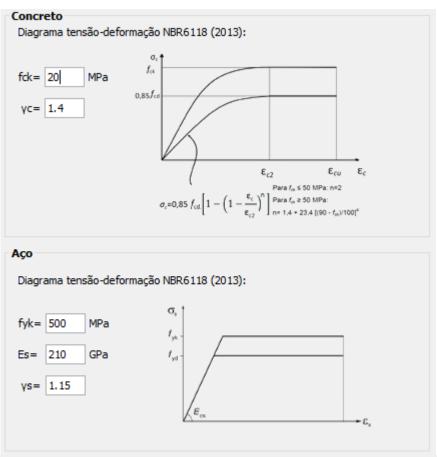
Comprimento final, com no mínimo 5 metros em rocha fraturada

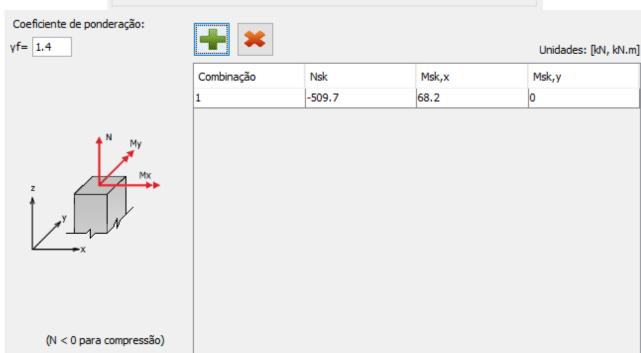
3.4 Dimensionamento estrutural das estacas

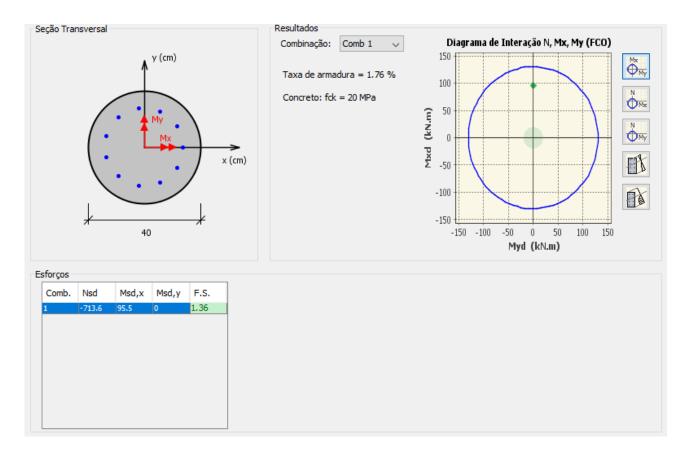
3.4.1 Apoio P1=P3

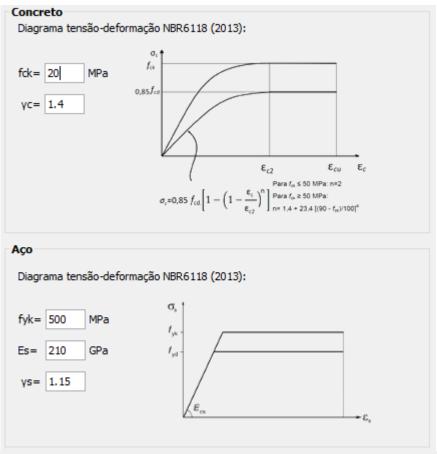
Os esforços nas estacas foram avaliados, adotando coeficientes de mola no solo, baseados nas sondagens SM-09 e SM-10.

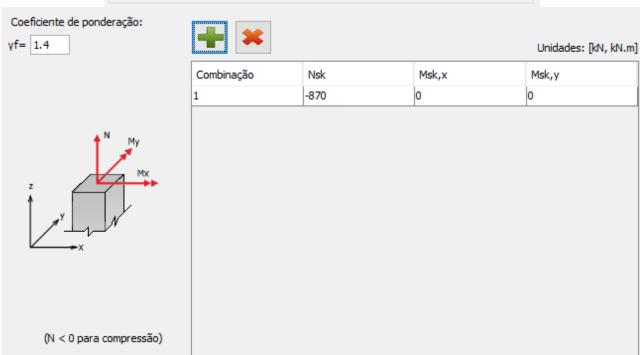

		SM-09			
z (m)	SPT	Solo	m (tf/m4)	Crh (tf/m³)	Kh (tf/m)
1	0	Argila	25	25	10
2	7	Argila	300	600	240
3	4	Argila	200	600	240
4	3	Argila	150	600	240
5	4	Argila	200	1000	400
6	5	Argila	250	1500	600
7	30	Alteração de rocha	900	6300	2520
8	30	Alteração de rocha	900	7200	2880


	SM-10						
z (m)	SPT	Solo	m (tf/m4)	Crh (tf/m³)	Kh (tf/m)		
1	0	Argila	25	25	10		
2	0	Argila	25	50	20		
3	6	Argila	300	900	360		
4	2	Argila	112,5	450	180		
5	4	Argila	200	1000	400		
6	4	Argila	200	1200	480		
7	4	Argila	200	1400	560		
8	7	Argila	333	2664	1065,6		
9	19	Argila	640	5760	2304		
10	30	Alteração de rocha	900	9000	3600		
11	30	Alteração de rocha	900	9900	3960		

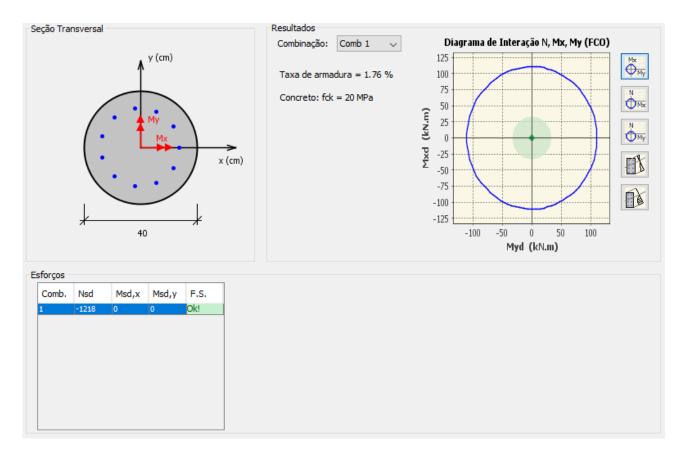

Esforços e dimensionamento apoio P1

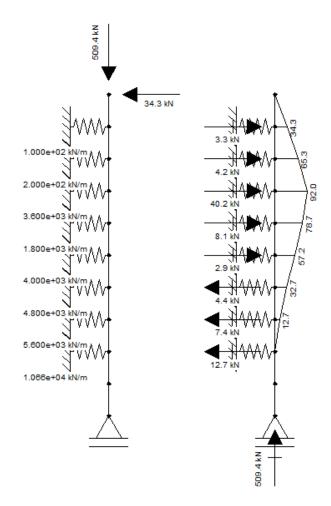





Armadura adotada: 11 ϕ 16,0

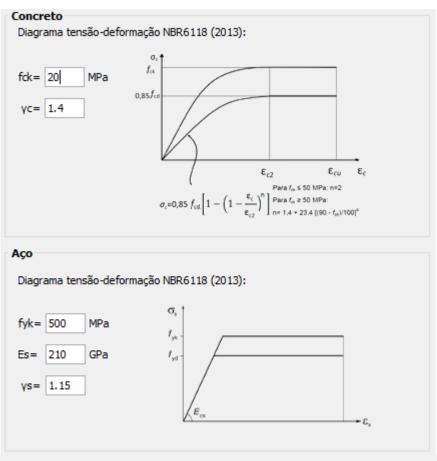
• Dimensionamento apoio P2

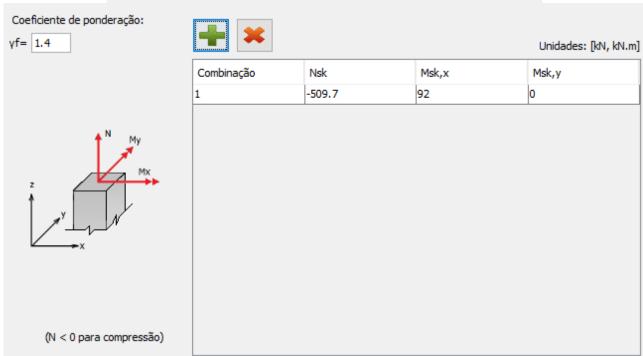


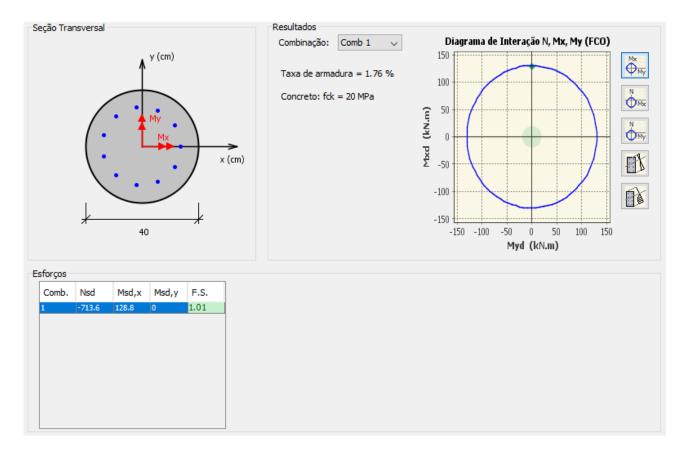


Armadura adotada: 11 ϕ 16,0

• Esforços e dimensionamento apoio P3







143

Armadura adotada: 11 ϕ 16,0

F - TERMO DE ENCERRAMENTO

145

1. Termo de Encerramento

O presente documento, intitulado Volume 3D – Memória de Cálculo de Estruturas, é parte integrante do *Projeto Executivo de engenharia para duplicação e restauração da Rodovia PR-170/PRC-466, com início do perímetro urbano de Turvo, e finalizando no início da pista dupla em Guarapuava, no Estado do Paraná - Lote 02 – Subtrecho 01: km 220 (Perímetro Urbano de Turvo) a Entroncamento da Rodovia Municipal (Palmeirinha), com extensão, aproximada, de 25,50 km. foi elaborado pelo Consórcio Iguatemi-Única, composto pelas empresas Iguatemi Consultoria e Serviços de Engenharia Ltda. e Única Consultores de Engenharia Ltda., e possui 145 (cento e quarenta e cinco) páginas, numeradas sequencialmente.*

Eng.º Prudêncio Valentim Wust Coordenador Geral – Consórcio Iguatemi-Única CREA/SC 005.818-1

Florianópolis, dezembro de 2023